Metamath Proof Explorer


Theorem hgt750lem2

Description: Decimal multiplication galore! (Contributed by Thierry Arnoux, 26-Dec-2021)

Ref Expression
Assertion hgt750lem2 ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) < ( 7 . 3 4 8 )

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 0re 0 ∈ ℝ
3 7re 7 ∈ ℝ
4 9re 9 ∈ ℝ
5 5re 5 ∈ ℝ
6 5 5 pm3.2i ( 5 ∈ ℝ ∧ 5 ∈ ℝ )
7 dp2cl ( ( 5 ∈ ℝ ∧ 5 ∈ ℝ ) → 5 5 ∈ ℝ )
8 6 7 ax-mp 5 5 ∈ ℝ
9 4 8 pm3.2i ( 9 ∈ ℝ ∧ 5 5 ∈ ℝ )
10 dp2cl ( ( 9 ∈ ℝ ∧ 5 5 ∈ ℝ ) → 9 5 5 ∈ ℝ )
11 9 10 ax-mp 9 5 5 ∈ ℝ
12 4 11 pm3.2i ( 9 ∈ ℝ ∧ 9 5 5 ∈ ℝ )
13 dp2cl ( ( 9 ∈ ℝ ∧ 9 5 5 ∈ ℝ ) → 9 9 5 5 ∈ ℝ )
14 12 13 ax-mp 9 9 5 5 ∈ ℝ
15 3 14 pm3.2i ( 7 ∈ ℝ ∧ 9 9 5 5 ∈ ℝ )
16 dp2cl ( ( 7 ∈ ℝ ∧ 9 9 5 5 ∈ ℝ ) → 7 9 9 5 5 ∈ ℝ )
17 15 16 ax-mp 7 9 9 5 5 ∈ ℝ
18 2 17 pm3.2i ( 0 ∈ ℝ ∧ 7 9 9 5 5 ∈ ℝ )
19 dp2cl ( ( 0 ∈ ℝ ∧ 7 9 9 5 5 ∈ ℝ ) → 0 7 9 9 5 5 ∈ ℝ )
20 18 19 ax-mp 0 7 9 9 5 5 ∈ ℝ
21 dpcl ( ( 1 ∈ ℕ0 0 7 9 9 5 5 ∈ ℝ ) → ( 1 . 0 7 9 9 5 5 ) ∈ ℝ )
22 1 20 21 mp2an ( 1 . 0 7 9 9 5 5 ) ∈ ℝ
23 22 resqcli ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) ∈ ℝ
24 4nn0 4 ∈ ℕ0
25 4nn 4 ∈ ℕ
26 nnrp ( 4 ∈ ℕ → 4 ∈ ℝ+ )
27 25 26 ax-mp 4 ∈ ℝ+
28 1 27 rpdp2cl 1 4 ∈ ℝ+
29 24 28 rpdp2cl 4 1 4 ∈ ℝ+
30 1 29 rpdpcl ( 1 . 4 1 4 ) ∈ ℝ+
31 rpre ( ( 1 . 4 1 4 ) ∈ ℝ+ → ( 1 . 4 1 4 ) ∈ ℝ )
32 30 31 ax-mp ( 1 . 4 1 4 ) ∈ ℝ
33 23 32 remulcli ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) ∈ ℝ
34 6re 6 ∈ ℝ
35 1re 1 ∈ ℝ
36 5 35 pm3.2i ( 5 ∈ ℝ ∧ 1 ∈ ℝ )
37 dp2cl ( ( 5 ∈ ℝ ∧ 1 ∈ ℝ ) → 5 1 ∈ ℝ )
38 36 37 ax-mp 5 1 ∈ ℝ
39 34 38 pm3.2i ( 6 ∈ ℝ ∧ 5 1 ∈ ℝ )
40 dp2cl ( ( 6 ∈ ℝ ∧ 5 1 ∈ ℝ ) → 6 5 1 ∈ ℝ )
41 39 40 ax-mp 6 5 1 ∈ ℝ
42 dpcl ( ( 1 ∈ ℕ0 6 5 1 ∈ ℝ ) → ( 1 . 6 5 1 ) ∈ ℝ )
43 1 41 42 mp2an ( 1 . 6 5 1 ) ∈ ℝ
44 33 43 pm3.2i ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) ∈ ℝ ∧ ( 1 . 6 5 1 ) ∈ ℝ )
45 22 sqge0i 0 ≤ ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 )
46 rpgt0 ( ( 1 . 4 1 4 ) ∈ ℝ+ → 0 < ( 1 . 4 1 4 ) )
47 30 46 ax-mp 0 < ( 1 . 4 1 4 )
48 2 32 47 ltleii 0 ≤ ( 1 . 4 1 4 )
49 23 32 mulge0i ( ( 0 ≤ ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) ∧ 0 ≤ ( 1 . 4 1 4 ) ) → 0 ≤ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) )
50 45 48 49 mp2an 0 ≤ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) )
51 0nn0 0 ∈ ℕ0
52 7nn0 7 ∈ ℕ0
53 9nn0 9 ∈ ℕ0
54 5nn0 5 ∈ ℕ0
55 5nn 5 ∈ ℕ
56 nnrp ( 5 ∈ ℕ → 5 ∈ ℝ+ )
57 55 56 ax-mp 5 ∈ ℝ+
58 54 57 rpdp2cl 5 5 ∈ ℝ+
59 53 58 rpdp2cl 9 5 5 ∈ ℝ+
60 53 59 rpdp2cl 9 9 5 5 ∈ ℝ+
61 52 60 rpdp2cl 7 9 9 5 5 ∈ ℝ+
62 51 61 rpdp2cl 0 7 9 9 5 5 ∈ ℝ+
63 8nn 8 ∈ ℕ
64 63 rpdp2cl2 8 0 ∈ ℝ+
65 51 64 rpdp2cl 0 8 0 ∈ ℝ+
66 9lt10 9 < 1 0
67 5lt10 5 < 1 0
68 54 57 67 67 dp2lt10 5 5 < 1 0
69 53 58 66 68 dp2lt10 9 5 5 < 1 0
70 53 59 66 69 dp2lt10 9 9 5 5 < 1 0
71 7p1e8 ( 7 + 1 ) = 8
72 52 60 70 71 dp2ltsuc 7 9 9 5 5 < 8
73 8nn0 8 ∈ ℕ0
74 73 dp20u 8 0 = 8
75 72 74 breqtrri 7 9 9 5 5 < 8 0
76 51 61 64 75 dp2lt 0 7 9 9 5 5 < 0 8 0
77 1 62 65 76 dplt ( 1 . 0 7 9 9 5 5 ) < ( 1 . 0 8 0 )
78 1 62 rpdpcl ( 1 . 0 7 9 9 5 5 ) ∈ ℝ+
79 rpge0 ( ( 1 . 0 7 9 9 5 5 ) ∈ ℝ+ → 0 ≤ ( 1 . 0 7 9 9 5 5 ) )
80 78 79 ax-mp 0 ≤ ( 1 . 0 7 9 9 5 5 )
81 1 65 rpdpcl ( 1 . 0 8 0 ) ∈ ℝ+
82 rpge0 ( ( 1 . 0 8 0 ) ∈ ℝ+ → 0 ≤ ( 1 . 0 8 0 ) )
83 81 82 ax-mp 0 ≤ ( 1 . 0 8 0 )
84 8re 8 ∈ ℝ
85 84 2 pm3.2i ( 8 ∈ ℝ ∧ 0 ∈ ℝ )
86 dp2cl ( ( 8 ∈ ℝ ∧ 0 ∈ ℝ ) → 8 0 ∈ ℝ )
87 85 86 ax-mp 8 0 ∈ ℝ
88 2 87 pm3.2i ( 0 ∈ ℝ ∧ 8 0 ∈ ℝ )
89 dp2cl ( ( 0 ∈ ℝ ∧ 8 0 ∈ ℝ ) → 0 8 0 ∈ ℝ )
90 88 89 ax-mp 0 8 0 ∈ ℝ
91 dpcl ( ( 1 ∈ ℕ0 0 8 0 ∈ ℝ ) → ( 1 . 0 8 0 ) ∈ ℝ )
92 1 90 91 mp2an ( 1 . 0 8 0 ) ∈ ℝ
93 22 92 lt2sqi ( ( 0 ≤ ( 1 . 0 7 9 9 5 5 ) ∧ 0 ≤ ( 1 . 0 8 0 ) ) → ( ( 1 . 0 7 9 9 5 5 ) < ( 1 . 0 8 0 ) ↔ ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) < ( ( 1 . 0 8 0 ) ↑ 2 ) ) )
94 80 83 93 mp2an ( ( 1 . 0 7 9 9 5 5 ) < ( 1 . 0 8 0 ) ↔ ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) < ( ( 1 . 0 8 0 ) ↑ 2 ) )
95 77 94 mpbi ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) < ( ( 1 . 0 8 0 ) ↑ 2 )
96 92 recni ( 1 . 0 8 0 ) ∈ ℂ
97 96 sqvali ( ( 1 . 0 8 0 ) ↑ 2 ) = ( ( 1 . 0 8 0 ) · ( 1 . 0 8 0 ) )
98 6nn0 6 ∈ ℕ0
99 1 98 deccl 1 6 ∈ ℕ0
100 98 24 deccl 6 4 ∈ ℕ0
101 4lt10 4 < 1 0
102 10pos 0 < 1 0
103 99 51 deccl 1 6 0 ∈ ℕ0
104 eqid 1 6 0 0 = 1 6 0 0
105 eqid 6 4 = 6 4
106 eqid 1 6 0 = 1 6 0
107 98 dec0h 6 = 0 6
108 99 nn0cni 1 6 ∈ ℂ
109 108 addid1i ( 1 6 + 0 ) = 1 6
110 6cn 6 ∈ ℂ
111 110 addid2i ( 0 + 6 ) = 6
112 99 51 51 98 106 107 109 111 decadd ( 1 6 0 + 6 ) = 1 6 6
113 4cn 4 ∈ ℂ
114 113 addid2i ( 0 + 4 ) = 4
115 103 51 98 24 104 105 112 114 decadd ( 1 6 0 0 + 6 4 ) = 1 6 6 4
116 1t1e1 ( 1 · 1 ) = 1
117 1 dp0u ( 1 . 0 ) = 1
118 117 117 oveq12i ( ( 1 . 0 ) · ( 1 . 0 ) ) = ( 1 · 1 )
119 51 dp20u 0 0 = 0
120 119 oveq2i ( 1 . 0 0 ) = ( 1 . 0 )
121 120 117 eqtri ( 1 . 0 0 ) = 1
122 116 118 121 3eqtr4i ( ( 1 . 0 ) · ( 1 . 0 ) ) = ( 1 . 0 0 )
123 8t8e64 ( 8 · 8 ) = 6 4
124 73 dp0u ( 8 . 0 ) = 8
125 124 124 oveq12i ( ( 8 . 0 ) · ( 8 . 0 ) ) = ( 8 · 8 )
126 119 oveq2i ( 6 4 . 0 0 ) = ( 6 4 . 0 )
127 100 dp0u ( 6 4 . 0 ) = 6 4
128 126 127 eqtri ( 6 4 . 0 0 ) = 6 4
129 123 125 128 3eqtr4i ( ( 8 . 0 ) · ( 8 . 0 ) ) = ( 6 4 . 0 0 )
130 10nn0 1 0 ∈ ℕ0
131 130 51 deccl 1 0 0 ∈ ℕ0
132 eqid 1 0 0 1 = 1 0 0 1
133 eqid 1 6 6 = 1 6 6
134 eqid 1 0 0 = 1 0 0
135 eqid 1 6 = 1 6
136 dec10p ( 1 0 + 1 ) = 1 1
137 130 51 1 98 134 135 136 111 decadd ( 1 0 0 + 1 6 ) = 1 1 6
138 ax-1cn 1 ∈ ℂ
139 138 110 addcomi ( 1 + 6 ) = ( 6 + 1 )
140 6p1e7 ( 6 + 1 ) = 7
141 139 140 eqtri ( 1 + 6 ) = 7
142 131 1 99 98 132 133 137 141 decadd ( 1 0 0 1 + 1 6 6 ) = 1 1 6 7
143 eqid 1 7 = 1 7
144 141 oveq1i ( ( 1 + 6 ) + 1 ) = ( 7 + 1 )
145 144 71 eqtri ( ( 1 + 6 ) + 1 ) = 8
146 7p4e11 ( 7 + 4 ) = 1 1
147 1 52 98 24 143 105 145 1 146 decaddc ( 1 7 + 6 4 ) = 8 1
148 119 oveq2i ( 1 6 . 0 0 ) = ( 1 6 . 0 )
149 99 dp0u ( 1 6 . 0 ) = 1 6
150 148 149 eqtri ( 1 6 . 0 0 ) = 1 6
151 121 150 oveq12i ( ( 1 . 0 0 ) + ( 1 6 . 0 0 ) ) = ( 1 + 1 6 )
152 1 dec0h 1 = 0 1
153 138 addid2i ( 0 + 1 ) = 1
154 51 1 1 98 152 135 153 141 decadd ( 1 + 1 6 ) = 1 7
155 151 154 eqtri ( ( 1 . 0 0 ) + ( 1 6 . 0 0 ) ) = 1 7
156 155 128 oveq12i ( ( ( 1 . 0 0 ) + ( 1 6 . 0 0 ) ) + ( 6 4 . 0 0 ) ) = ( 1 7 + 6 4 )
157 117 124 oveq12i ( ( 1 . 0 ) + ( 8 . 0 ) ) = ( 1 + 8 )
158 8cn 8 ∈ ℂ
159 138 158 addcomi ( 1 + 8 ) = ( 8 + 1 )
160 8p1e9 ( 8 + 1 ) = 9
161 157 159 160 3eqtri ( ( 1 . 0 ) + ( 8 . 0 ) ) = 9
162 161 161 oveq12i ( ( ( 1 . 0 ) + ( 8 . 0 ) ) · ( ( 1 . 0 ) + ( 8 . 0 ) ) ) = ( 9 · 9 )
163 9t9e81 ( 9 · 9 ) = 8 1
164 162 163 eqtri ( ( ( 1 . 0 ) + ( 8 . 0 ) ) · ( ( 1 . 0 ) + ( 8 . 0 ) ) ) = 8 1
165 147 156 164 3eqtr4ri ( ( ( 1 . 0 ) + ( 8 . 0 ) ) · ( ( 1 . 0 ) + ( 8 . 0 ) ) ) = ( ( ( 1 . 0 0 ) + ( 1 6 . 0 0 ) ) + ( 6 4 . 0 0 ) )
166 1 51 73 51 1 73 51 51 51 51 1 99 51 51 100 51 51 1 98 98 24 1 1 98 52 101 102 102 115 122 129 142 165 dpmul4 ( ( 1 . 0 8 0 ) · ( 1 . 0 8 0 ) ) < ( 1 . 1 6 7 )
167 97 166 eqbrtri ( ( 1 . 0 8 0 ) ↑ 2 ) < ( 1 . 1 6 7 )
168 92 resqcli ( ( 1 . 0 8 0 ) ↑ 2 ) ∈ ℝ
169 34 3 pm3.2i ( 6 ∈ ℝ ∧ 7 ∈ ℝ )
170 dp2cl ( ( 6 ∈ ℝ ∧ 7 ∈ ℝ ) → 6 7 ∈ ℝ )
171 169 170 ax-mp 6 7 ∈ ℝ
172 35 171 pm3.2i ( 1 ∈ ℝ ∧ 6 7 ∈ ℝ )
173 dp2cl ( ( 1 ∈ ℝ ∧ 6 7 ∈ ℝ ) → 1 6 7 ∈ ℝ )
174 172 173 ax-mp 1 6 7 ∈ ℝ
175 dpcl ( ( 1 ∈ ℕ0 1 6 7 ∈ ℝ ) → ( 1 . 1 6 7 ) ∈ ℝ )
176 1 174 175 mp2an ( 1 . 1 6 7 ) ∈ ℝ
177 23 168 176 lttri ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) < ( ( 1 . 0 8 0 ) ↑ 2 ) ∧ ( ( 1 . 0 8 0 ) ↑ 2 ) < ( 1 . 1 6 7 ) ) → ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) < ( 1 . 1 6 7 ) )
178 95 167 177 mp2an ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) < ( 1 . 1 6 7 )
179 23 176 32 47 ltmul1ii ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) < ( 1 . 1 6 7 ) ↔ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( ( 1 . 1 6 7 ) · ( 1 . 4 1 4 ) ) )
180 178 179 mpbi ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( ( 1 . 1 6 7 ) · ( 1 . 4 1 4 ) )
181 2nn0 2 ∈ ℕ0
182 3nn0 3 ∈ ℕ0
183 1lt10 1 < 1 0
184 3lt10 3 < 1 0
185 8lt10 8 < 1 0
186 130 53 deccl 1 0 9 ∈ ℕ0
187 eqid 1 0 9 2 = 1 0 9 2
188 53 dec0h 9 = 0 9
189 186 nn0cni 1 0 9 ∈ ℂ
190 189 addid1i ( 1 0 9 + 0 ) = 1 0 9
191 dec10p ( 1 0 + 0 ) = 1 0
192 138 addid1i ( 1 + 0 ) = 1
193 1 51 51 1 191 152 192 153 decadd ( ( 1 0 + 0 ) + 1 ) = 1 1
194 9p1e10 ( 9 + 1 ) = 1 0
195 130 53 51 1 190 152 193 51 194 decaddc ( ( 1 0 9 + 0 ) + 1 ) = 1 1 0
196 9cn 9 ∈ ℂ
197 2cn 2 ∈ ℂ
198 196 197 addcomi ( 9 + 2 ) = ( 2 + 9 )
199 9p2e11 ( 9 + 2 ) = 1 1
200 198 199 eqtr3i ( 2 + 9 ) = 1 1
201 186 181 51 53 187 188 195 1 200 decaddc ( 1 0 9 2 + 9 ) = 1 1 0 1
202 113 138 mulcomi ( 4 · 1 ) = ( 1 · 4 )
203 113 mulid1i ( 4 · 1 ) = 4
204 202 203 eqtr3i ( 1 · 4 ) = 4
205 24 dec0h 4 = 0 4
206 203 202 205 3eqtr3i ( 1 · 4 ) = 0 4
207 138 113 addcli ( 1 + 4 ) ∈ ℂ
208 207 addid1i ( ( 1 + 4 ) + 0 ) = ( 1 + 4 )
209 113 138 addcomi ( 4 + 1 ) = ( 1 + 4 )
210 4p1e5 ( 4 + 1 ) = 5
211 208 209 210 3eqtr2i ( ( 1 + 4 ) + 0 ) = 5
212 54 dec0h 5 = 0 5
213 211 212 eqtri ( ( 1 + 4 ) + 0 ) = 0 5
214 1 1 1 24 51 51 54 24 116 204 116 206 213 192 dpmul ( ( 1 . 1 ) · ( 1 . 4 ) ) = ( 1 . 5 4 )
215 110 mulid1i ( 6 · 1 ) = 6
216 6t4e24 ( 6 · 4 ) = 2 4
217 7cn 7 ∈ ℂ
218 217 mulid1i ( 7 · 1 ) = 7
219 7t4e28 ( 7 · 4 ) = 2 8
220 181 24 deccl 2 4 ∈ ℕ0
221 220 nn0cni 2 4 ∈ ℂ
222 221 217 addcomi ( 2 4 + 7 ) = ( 7 + 2 4 )
223 eqid 2 4 = 2 4
224 2p1e3 ( 2 + 1 ) = 3
225 217 113 146 addcomli ( 4 + 7 ) = 1 1
226 181 24 52 223 224 1 225 decaddci ( 2 4 + 7 ) = 3 1
227 222 226 eqtr3i ( 7 + 2 4 ) = 3 1
228 227 oveq1i ( ( 7 + 2 4 ) + 2 ) = ( 3 1 + 2 )
229 eqid 3 1 = 3 1
230 197 138 224 addcomli ( 1 + 2 ) = 3
231 182 1 181 229 230 decaddi ( 3 1 + 2 ) = 3 3
232 228 231 eqtri ( ( 7 + 2 4 ) + 2 ) = 3 3
233 6p3e9 ( 6 + 3 ) = 9
234 98 52 1 24 181 182 182 73 215 216 218 219 232 233 dpmul ( ( 6 . 7 ) · ( 1 . 4 ) ) = ( 9 . 3 8 )
235 1 54 deccl 1 5 ∈ ℕ0
236 235 24 deccl 1 5 4 ∈ ℕ0
237 51 1 deccl 0 1 ∈ ℕ0
238 237 1 deccl 0 1 1 ∈ ℕ0
239 eqid 1 5 4 1 = 1 5 4 1
240 152 deceq1i 1 1 = 0 1 1
241 240 deceq1i 1 1 0 = 0 1 1 0
242 eqid 1 5 4 = 1 5 4
243 eqid 0 1 1 = 0 1 1
244 152 oveq2i ( 1 5 + 1 ) = ( 1 5 + 0 1 )
245 eqid 1 5 = 1 5
246 5p1e6 ( 5 + 1 ) = 6
247 1 54 1 245 246 decaddi ( 1 5 + 1 ) = 1 6
248 244 247 eqtr3i ( 1 5 + 0 1 ) = 1 6
249 235 24 237 1 242 243 248 210 decadd ( 1 5 4 + 0 1 1 ) = 1 6 5
250 236 1 238 51 239 241 249 192 decadd ( 1 5 4 1 + 1 1 0 ) = 1 6 5 1
251 7t2e14 ( 7 · 2 ) = 1 4
252 8t7e56 ( 8 · 7 ) = 5 6
253 158 217 252 mulcomli ( 7 · 8 ) = 5 6
254 8t2e16 ( 8 · 2 ) = 1 6
255 eqid 5 6 = 5 6
256 5cn 5 ∈ ℂ
257 256 138 246 addcomli ( 1 + 5 ) = 6
258 257 oveq1i ( ( 1 + 5 ) + 1 ) = ( 6 + 1 )
259 258 140 eqtri ( ( 1 + 5 ) + 1 ) = 7
260 6p6e12 ( 6 + 6 ) = 1 2
261 1 98 54 98 135 255 259 181 260 decaddc ( 1 6 + 5 6 ) = 7 2
262 261 oveq1i ( ( 1 6 + 5 6 ) + 6 ) = ( 7 2 + 6 )
263 eqid 7 2 = 7 2
264 6p2e8 ( 6 + 2 ) = 8
265 110 197 264 addcomli ( 2 + 6 ) = 8
266 52 181 98 263 265 decaddi ( 7 2 + 6 ) = 7 8
267 262 266 eqtri ( ( 1 6 + 5 6 ) + 6 ) = 7 8
268 eqid 1 4 = 1 4
269 1p1e2 ( 1 + 1 ) = 2
270 1 24 52 268 269 1 225 decaddci ( 1 4 + 7 ) = 2 1
271 52 73 181 73 98 52 73 24 251 253 254 123 267 270 dpmul ( ( 7 . 8 ) · ( 2 . 8 ) ) = ( 2 1 . 8 4 )
272 eqid 1 1 = 1 1
273 eqid 6 7 = 6 7
274 217 138 71 addcomli ( 1 + 7 ) = 8
275 1 1 98 52 272 273 141 274 decadd ( 1 1 + 6 7 ) = 7 8
276 1 1 98 52 52 73 275 dpadd ( ( 1 . 1 ) + ( 6 . 7 ) ) = ( 7 . 8 )
277 4p4e8 ( 4 + 4 ) = 8
278 1 24 1 24 268 268 269 277 decadd ( 1 4 + 1 4 ) = 2 8
279 1 24 1 24 181 73 278 dpadd ( ( 1 . 4 ) + ( 1 . 4 ) ) = ( 2 . 8 )
280 276 279 oveq12i ( ( ( 1 . 1 ) + ( 6 . 7 ) ) · ( ( 1 . 4 ) + ( 1 . 4 ) ) ) = ( ( 7 . 8 ) · ( 2 . 8 ) )
281 1 181 deccl 1 2 ∈ ℕ0
282 eqid 1 0 9 = 1 0 9
283 130 nn0cni 1 0 ∈ ℂ
284 283 138 136 addcomli ( 1 + 1 0 ) = 1 1
285 1 1 269 284 decsuc ( ( 1 + 1 0 ) + 1 ) = 1 2
286 9p5e14 ( 9 + 5 ) = 1 4
287 196 256 286 addcomli ( 5 + 9 ) = 1 4
288 1 54 130 53 245 282 285 24 287 decaddc ( 1 5 + 1 0 9 ) = 1 2 4
289 4p2e6 ( 4 + 2 ) = 6
290 235 24 186 181 242 187 288 289 decadd ( 1 5 4 + 1 0 9 2 ) = 1 2 4 6
291 1 54 24 130 53 281 181 24 98 290 dpadd3 ( ( 1 . 5 4 ) + ( 1 0 . 9 2 ) ) = ( 1 2 . 4 6 )
292 291 oveq1i ( ( ( 1 . 5 4 ) + ( 1 0 . 9 2 ) ) + ( 9 . 3 8 ) ) = ( ( 1 2 . 4 6 ) + ( 9 . 3 8 ) )
293 181 1 deccl 2 1 ∈ ℕ0
294 281 24 deccl 1 2 4 ∈ ℕ0
295 53 182 deccl 9 3 ∈ ℕ0
296 eqid 1 2 4 6 = 1 2 4 6
297 eqid 9 3 8 = 9 3 8
298 eqid 1 2 4 = 1 2 4
299 eqid 9 3 = 9 3
300 eqid 1 2 = 1 2
301 1 181 53 300 269 1 200 decaddci ( 1 2 + 9 ) = 2 1
302 4p3e7 ( 4 + 3 ) = 7
303 281 24 53 182 298 299 301 302 decadd ( 1 2 4 + 9 3 ) = 2 1 7
304 293 52 71 303 decsuc ( ( 1 2 4 + 9 3 ) + 1 ) = 2 1 8
305 8p6e14 ( 8 + 6 ) = 1 4
306 158 110 305 addcomli ( 6 + 8 ) = 1 4
307 294 98 295 73 296 297 304 24 306 decaddc ( 1 2 4 6 + 9 3 8 ) = 2 1 8 4
308 281 24 98 53 182 293 73 73 24 307 dpadd3 ( ( 1 2 . 4 6 ) + ( 9 . 3 8 ) ) = ( 2 1 . 8 4 )
309 292 308 eqtri ( ( ( 1 . 5 4 ) + ( 1 0 . 9 2 ) ) + ( 9 . 3 8 ) ) = ( 2 1 . 8 4 )
310 271 280 309 3eqtr4i ( ( ( 1 . 1 ) + ( 6 . 7 ) ) · ( ( 1 . 4 ) + ( 1 . 4 ) ) ) = ( ( ( 1 . 5 4 ) + ( 1 0 . 9 2 ) ) + ( 9 . 3 8 ) )
311 1 1 98 52 1 1 54 24 24 24 1 130 53 181 53 182 73 1 1 51 1 1 98 54 1 183 184 185 201 214 234 250 310 dpmul4 ( ( 1 . 1 6 7 ) · ( 1 . 4 1 4 ) ) < ( 1 . 6 5 1 )
312 176 32 remulcli ( ( 1 . 1 6 7 ) · ( 1 . 4 1 4 ) ) ∈ ℝ
313 33 312 43 lttri ( ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( ( 1 . 1 6 7 ) · ( 1 . 4 1 4 ) ) ∧ ( ( 1 . 1 6 7 ) · ( 1 . 4 1 4 ) ) < ( 1 . 6 5 1 ) ) → ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( 1 . 6 5 1 ) )
314 180 311 313 mp2an ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( 1 . 6 5 1 )
315 50 314 pm3.2i ( 0 ≤ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) ∧ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( 1 . 6 5 1 ) )
316 44 315 pm3.2i ( ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) ∈ ℝ ∧ ( 1 . 6 5 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) ∧ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( 1 . 6 5 1 ) ) )
317 4re 4 ∈ ℝ
318 2re 2 ∈ ℝ
319 3re 3 ∈ ℝ
320 34 319 pm3.2i ( 6 ∈ ℝ ∧ 3 ∈ ℝ )
321 dp2cl ( ( 6 ∈ ℝ ∧ 3 ∈ ℝ ) → 6 3 ∈ ℝ )
322 320 321 ax-mp 6 3 ∈ ℝ
323 318 322 pm3.2i ( 2 ∈ ℝ ∧ 6 3 ∈ ℝ )
324 dp2cl ( ( 2 ∈ ℝ ∧ 6 3 ∈ ℝ ) → 2 6 3 ∈ ℝ )
325 323 324 ax-mp 2 6 3 ∈ ℝ
326 317 325 pm3.2i ( 4 ∈ ℝ ∧ 2 6 3 ∈ ℝ )
327 dp2cl ( ( 4 ∈ ℝ ∧ 2 6 3 ∈ ℝ ) → 4 2 6 3 ∈ ℝ )
328 326 327 ax-mp 4 2 6 3 ∈ ℝ
329 dpcl ( ( 1 ∈ ℕ0 4 2 6 3 ∈ ℝ ) → ( 1 . 4 2 6 3 ) ∈ ℝ )
330 1 328 329 mp2an ( 1 . 4 2 6 3 ) ∈ ℝ
331 84 319 pm3.2i ( 8 ∈ ℝ ∧ 3 ∈ ℝ )
332 dp2cl ( ( 8 ∈ ℝ ∧ 3 ∈ ℝ ) → 8 3 ∈ ℝ )
333 331 332 ax-mp 8 3 ∈ ℝ
334 84 333 pm3.2i ( 8 ∈ ℝ ∧ 8 3 ∈ ℝ )
335 dp2cl ( ( 8 ∈ ℝ ∧ 8 3 ∈ ℝ ) → 8 8 3 ∈ ℝ )
336 334 335 ax-mp 8 8 3 ∈ ℝ
337 319 336 pm3.2i ( 3 ∈ ℝ ∧ 8 8 3 ∈ ℝ )
338 dp2cl ( ( 3 ∈ ℝ ∧ 8 8 3 ∈ ℝ ) → 3 8 8 3 ∈ ℝ )
339 337 338 ax-mp 3 8 8 3 ∈ ℝ
340 2 339 pm3.2i ( 0 ∈ ℝ ∧ 3 8 8 3 ∈ ℝ )
341 dp2cl ( ( 0 ∈ ℝ ∧ 3 8 8 3 ∈ ℝ ) → 0 3 8 8 3 ∈ ℝ )
342 340 341 ax-mp 0 3 8 8 3 ∈ ℝ
343 dpcl ( ( 1 ∈ ℕ0 0 3 8 8 3 ∈ ℝ ) → ( 1 . 0 3 8 8 3 ) ∈ ℝ )
344 1 342 343 mp2an ( 1 . 0 3 8 8 3 ) ∈ ℝ
345 330 344 remulcli ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ∈ ℝ
346 317 333 pm3.2i ( 4 ∈ ℝ ∧ 8 3 ∈ ℝ )
347 dp2cl ( ( 4 ∈ ℝ ∧ 8 3 ∈ ℝ ) → 4 8 3 ∈ ℝ )
348 346 347 ax-mp 4 8 3 ∈ ℝ
349 dpcl ( ( 1 ∈ ℕ0 4 8 3 ∈ ℝ ) → ( 1 . 4 8 3 ) ∈ ℝ )
350 1 348 349 mp2an ( 1 . 4 8 3 ) ∈ ℝ
351 345 350 pm3.2i ( ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ∈ ℝ ∧ ( 1 . 4 8 3 ) ∈ ℝ )
352 3rp 3 ∈ ℝ+
353 98 352 rpdp2cl 6 3 ∈ ℝ+
354 181 353 rpdp2cl 2 6 3 ∈ ℝ+
355 24 354 rpdp2cl 4 2 6 3 ∈ ℝ+
356 1 355 rpdpcl ( 1 . 4 2 6 3 ) ∈ ℝ+
357 rpge0 ( ( 1 . 4 2 6 3 ) ∈ ℝ+ → 0 ≤ ( 1 . 4 2 6 3 ) )
358 356 357 ax-mp 0 ≤ ( 1 . 4 2 6 3 )
359 73 352 rpdp2cl 8 3 ∈ ℝ+
360 73 359 rpdp2cl 8 8 3 ∈ ℝ+
361 182 360 rpdp2cl 3 8 8 3 ∈ ℝ+
362 51 361 rpdp2cl 0 3 8 8 3 ∈ ℝ+
363 1 362 rpdpcl ( 1 . 0 3 8 8 3 ) ∈ ℝ+
364 rpge0 ( ( 1 . 0 3 8 8 3 ) ∈ ℝ+ → 0 ≤ ( 1 . 0 3 8 8 3 ) )
365 363 364 ax-mp 0 ≤ ( 1 . 0 3 8 8 3 )
366 330 344 mulge0i ( ( 0 ≤ ( 1 . 4 2 6 3 ) ∧ 0 ≤ ( 1 . 0 3 8 8 3 ) ) → 0 ≤ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) )
367 358 365 366 mp2an 0 ≤ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) )
368 318 3 pm3.2i ( 2 ∈ ℝ ∧ 7 ∈ ℝ )
369 dp2cl ( ( 2 ∈ ℝ ∧ 7 ∈ ℝ ) → 2 7 ∈ ℝ )
370 368 369 ax-mp 2 7 ∈ ℝ
371 317 370 pm3.2i ( 4 ∈ ℝ ∧ 2 7 ∈ ℝ )
372 dp2cl ( ( 4 ∈ ℝ ∧ 2 7 ∈ ℝ ) → 4 2 7 ∈ ℝ )
373 371 372 ax-mp 4 2 7 ∈ ℝ
374 dpcl ( ( 1 ∈ ℕ0 4 2 7 ∈ ℝ ) → ( 1 . 4 2 7 ) ∈ ℝ )
375 1 373 374 mp2an ( 1 . 4 2 7 ) ∈ ℝ
376 330 375 pm3.2i ( ( 1 . 4 2 6 3 ) ∈ ℝ ∧ ( 1 . 4 2 7 ) ∈ ℝ )
377 7nn 7 ∈ ℕ
378 nnrp ( 7 ∈ ℕ → 7 ∈ ℝ+ )
379 377 378 ax-mp 7 ∈ ℝ+
380 181 379 rpdp2cl 2 7 ∈ ℝ+
381 24 380 rpdp2cl 4 2 7 ∈ ℝ+
382 98 352 184 140 dp2ltsuc 6 3 < 7
383 181 353 379 382 dp2lt 2 6 3 < 2 7
384 24 354 380 383 dp2lt 4 2 6 3 < 4 2 7
385 1 355 381 384 dplt ( 1 . 4 2 6 3 ) < ( 1 . 4 2 7 )
386 358 385 pm3.2i ( 0 ≤ ( 1 . 4 2 6 3 ) ∧ ( 1 . 4 2 6 3 ) < ( 1 . 4 2 7 ) )
387 376 386 pm3.2i ( ( ( 1 . 4 2 6 3 ) ∈ ℝ ∧ ( 1 . 4 2 7 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 . 4 2 6 3 ) ∧ ( 1 . 4 2 6 3 ) < ( 1 . 4 2 7 ) ) )
388 319 4 pm3.2i ( 3 ∈ ℝ ∧ 9 ∈ ℝ )
389 dp2cl ( ( 3 ∈ ℝ ∧ 9 ∈ ℝ ) → 3 9 ∈ ℝ )
390 388 389 ax-mp 3 9 ∈ ℝ
391 2 390 pm3.2i ( 0 ∈ ℝ ∧ 3 9 ∈ ℝ )
392 dp2cl ( ( 0 ∈ ℝ ∧ 3 9 ∈ ℝ ) → 0 3 9 ∈ ℝ )
393 391 392 ax-mp 0 3 9 ∈ ℝ
394 dpcl ( ( 1 ∈ ℕ0 0 3 9 ∈ ℝ ) → ( 1 . 0 3 9 ) ∈ ℝ )
395 1 393 394 mp2an ( 1 . 0 3 9 ) ∈ ℝ
396 344 395 pm3.2i ( ( 1 . 0 3 8 8 3 ) ∈ ℝ ∧ ( 1 . 0 3 9 ) ∈ ℝ )
397 9nn 9 ∈ ℕ
398 nnrp ( 9 ∈ ℕ → 9 ∈ ℝ+ )
399 397 398 ax-mp 9 ∈ ℝ+
400 182 399 rpdp2cl 3 9 ∈ ℝ+
401 51 400 rpdp2cl 0 3 9 ∈ ℝ+
402 73 352 185 184 dp2lt10 8 3 < 1 0
403 73 359 402 160 dp2ltsuc 8 8 3 < 9
404 182 360 399 403 dp2lt 3 8 8 3 < 3 9
405 51 361 400 404 dp2lt 0 3 8 8 3 < 0 3 9
406 1 362 401 405 dplt ( 1 . 0 3 8 8 3 ) < ( 1 . 0 3 9 )
407 365 406 pm3.2i ( 0 ≤ ( 1 . 0 3 8 8 3 ) ∧ ( 1 . 0 3 8 8 3 ) < ( 1 . 0 3 9 ) )
408 396 407 pm3.2i ( ( ( 1 . 0 3 8 8 3 ) ∈ ℝ ∧ ( 1 . 0 3 9 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 . 0 3 8 8 3 ) ∧ ( 1 . 0 3 8 8 3 ) < ( 1 . 0 3 9 ) ) )
409 ltmul12a ( ( ( ( ( 1 . 4 2 6 3 ) ∈ ℝ ∧ ( 1 . 4 2 7 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 . 4 2 6 3 ) ∧ ( 1 . 4 2 6 3 ) < ( 1 . 4 2 7 ) ) ) ∧ ( ( ( 1 . 0 3 8 8 3 ) ∈ ℝ ∧ ( 1 . 0 3 9 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 . 0 3 8 8 3 ) ∧ ( 1 . 0 3 8 8 3 ) < ( 1 . 0 3 9 ) ) ) ) → ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( ( 1 . 4 2 7 ) · ( 1 . 0 3 9 ) ) )
410 387 408 409 mp2an ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( ( 1 . 4 2 7 ) · ( 1 . 0 3 9 ) )
411 6lt10 6 < 1 0
412 73 1 deccl 8 1 ∈ ℕ0
413 eqid 8 1 6 = 8 1 6
414 eqid 1 0 = 1 0
415 eqid 8 1 = 8 1
416 73 1 269 415 decsuc ( 8 1 + 1 ) = 8 2
417 73 dec0h 8 = 0 8
418 417 deceq1i 8 2 = 0 8 2
419 416 418 eqtri ( 8 1 + 1 ) = 0 8 2
420 110 addid1i ( 6 + 0 ) = 6
421 412 98 1 51 413 414 419 420 decadd ( 8 1 6 + 1 0 ) = 0 8 2 6
422 138 mul01i ( 1 · 0 ) = 0
423 113 mul01i ( 4 · 0 ) = 0
424 51 dec0h 0 = 0 0
425 423 424 eqtri ( 4 · 0 ) = 0 0
426 113 addid1i ( 4 + 0 ) = 4
427 426 oveq1i ( ( 4 + 0 ) + 0 ) = ( 4 + 0 )
428 427 426 205 3eqtri ( ( 4 + 0 ) + 0 ) = 0 4
429 1 24 1 51 51 51 24 51 116 422 203 425 428 192 dpmul ( ( 1 . 4 ) · ( 1 . 0 ) ) = ( 1 . 4 0 )
430 3cn 3 ∈ ℂ
431 3t2e6 ( 3 · 2 ) = 6
432 430 197 431 mulcomli ( 2 · 3 ) = 6
433 9t2e18 ( 9 · 2 ) = 1 8
434 196 197 433 mulcomli ( 2 · 9 ) = 1 8
435 7t3e21 ( 7 · 3 ) = 2 1
436 9t7e63 ( 9 · 7 ) = 6 3
437 196 217 436 mulcomli ( 7 · 9 ) = 6 3
438 eqid 2 1 = 2 1
439 eqid 1 8 = 1 8
440 159 160 eqtri ( 1 + 8 ) = 9
441 181 1 1 73 438 439 224 440 decadd ( 2 1 + 1 8 ) = 3 9
442 441 oveq1i ( ( 2 1 + 1 8 ) + 6 ) = ( 3 9 + 6 )
443 eqid 3 9 = 3 9
444 3p1e4 ( 3 + 1 ) = 4
445 9p6e15 ( 9 + 6 ) = 1 5
446 182 53 98 443 444 54 445 decaddci ( 3 9 + 6 ) = 4 5
447 442 446 eqtri ( ( 2 1 + 1 8 ) + 6 ) = 4 5
448 6p4e10 ( 6 + 4 ) = 1 0
449 181 52 182 53 98 24 54 182 432 434 435 437 447 448 dpmul ( ( 2 . 7 ) · ( 3 . 9 ) ) = ( 1 0 . 5 3 )
450 1 24 deccl 1 4 ∈ ℕ0
451 450 51 deccl 1 4 0 ∈ ℕ0
452 417 73 eqeltrri 0 8 ∈ ℕ0
453 eqid 1 4 0 1 = 1 4 0 1
454 eqid 0 8 2 = 0 8 2
455 eqid 1 4 0 = 1 4 0
456 417 158 eqeltrri 0 8 ∈ ℂ
457 0cn 0 ∈ ℂ
458 417 oveq1i ( 8 + 0 ) = ( 0 8 + 0 )
459 158 addid1i ( 8 + 0 ) = 8
460 458 459 eqtr3i ( 0 8 + 0 ) = 8
461 456 457 460 addcomli ( 0 + 0 8 ) = 8
462 450 51 452 455 461 decaddi ( 1 4 0 + 0 8 ) = 1 4 8
463 451 1 452 181 453 454 462 230 decadd ( 1 4 0 1 + 0 8 2 ) = 1 4 8 3
464 4t4e16 ( 4 · 4 ) = 1 6
465 9t4e36 ( 9 · 4 ) = 3 6
466 196 113 465 mulcomli ( 4 · 9 ) = 3 6
467 196 mulid1i ( 9 · 1 ) = 9
468 467 188 eqtri ( 9 · 1 ) = 0 9
469 196 138 468 mulcomli ( 1 · 9 ) = 0 9
470 182 98 deccl 3 6 ∈ ℕ0
471 470 nn0cni 3 6 ∈ ℂ
472 eqid 3 6 = 3 6
473 182 98 24 472 444 51 448 decaddci ( 3 6 + 4 ) = 4 0
474 471 113 473 addcomli ( 4 + 3 6 ) = 4 0
475 474 oveq1i ( ( 4 + 3 6 ) + 0 ) = ( 4 0 + 0 )
476 24 51 deccl 4 0 ∈ ℕ0
477 476 nn0cni 4 0 ∈ ℂ
478 477 addid1i ( 4 0 + 0 ) = 4 0
479 475 478 eqtri ( ( 4 + 3 6 ) + 0 ) = 4 0
480 1 98 24 135 269 51 448 decaddci ( 1 6 + 4 ) = 2 0
481 24 1 24 53 51 24 51 53 464 466 204 469 479 480 dpmul ( ( 4 . 1 ) · ( 4 . 9 ) ) = ( 2 0 . 0 9 )
482 eqid 2 7 = 2 7
483 230 oveq1i ( ( 1 + 2 ) + 1 ) = ( 3 + 1 )
484 483 444 eqtri ( ( 1 + 2 ) + 1 ) = 4
485 1 24 181 52 268 482 484 1 225 decaddc ( 1 4 + 2 7 ) = 4 1
486 1 24 181 52 24 1 485 dpadd ( ( 1 . 4 ) + ( 2 . 7 ) ) = ( 4 . 1 )
487 430 138 444 addcomli ( 1 + 3 ) = 4
488 196 addid2i ( 0 + 9 ) = 9
489 1 51 182 53 414 443 487 488 decadd ( 1 0 + 3 9 ) = 4 9
490 1 51 182 53 24 53 489 dpadd ( ( 1 . 0 ) + ( 3 . 9 ) ) = ( 4 . 9 )
491 486 490 oveq12i ( ( ( 1 . 4 ) + ( 2 . 7 ) ) · ( ( 1 . 0 ) + ( 3 . 9 ) ) ) = ( ( 4 . 1 ) · ( 4 . 9 ) )
492 1 24 73 1 268 415 440 210 decadd ( 1 4 + 8 1 ) = 9 5
493 450 51 412 98 455 413 492 111 decadd ( 1 4 0 + 8 1 6 ) = 9 5 6
494 1 24 51 73 1 53 98 54 98 493 dpadd3 ( ( 1 . 4 0 ) + ( 8 . 1 6 ) ) = ( 9 . 5 6 )
495 494 oveq1i ( ( ( 1 . 4 0 ) + ( 8 . 1 6 ) ) + ( 1 0 . 5 3 ) ) = ( ( 9 . 5 6 ) + ( 1 0 . 5 3 ) )
496 181 51 deccl 2 0 ∈ ℕ0
497 53 54 deccl 9 5 ∈ ℕ0
498 130 54 deccl 1 0 5 ∈ ℕ0
499 eqid 9 5 6 = 9 5 6
500 eqid 1 0 5 3 = 1 0 5 3
501 eqid 9 5 = 9 5
502 eqid 1 0 5 = 1 0 5
503 dec10p ( 1 0 + 9 ) = 1 9
504 283 196 503 addcomli ( 9 + 1 0 ) = 1 9
505 504 oveq1i ( ( 9 + 1 0 ) + 1 ) = ( 1 9 + 1 )
506 eqid 1 9 = 1 9
507 1 53 1 506 269 51 194 decaddci ( 1 9 + 1 ) = 2 0
508 505 507 eqtri ( ( 9 + 1 0 ) + 1 ) = 2 0
509 5p5e10 ( 5 + 5 ) = 1 0
510 53 54 130 54 501 502 508 51 509 decaddc ( 9 5 + 1 0 5 ) = 2 0 0
511 497 98 498 182 499 500 510 233 decadd ( 9 5 6 + 1 0 5 3 ) = 2 0 0 9
512 53 54 98 130 54 496 182 51 53 511 dpadd3 ( ( 9 . 5 6 ) + ( 1 0 . 5 3 ) ) = ( 2 0 . 0 9 )
513 495 512 eqtri ( ( ( 1 . 4 0 ) + ( 8 . 1 6 ) ) + ( 1 0 . 5 3 ) ) = ( 2 0 . 0 9 )
514 481 491 513 3eqtr4i ( ( ( 1 . 4 ) + ( 2 . 7 ) ) · ( ( 1 . 0 ) + ( 3 . 9 ) ) ) = ( ( ( 1 . 4 0 ) + ( 8 . 1 6 ) ) + ( 1 0 . 5 3 ) )
515 1 24 181 52 1 182 24 51 51 53 1 73 1 98 130 54 182 51 73 181 98 1 24 73 182 411 67 184 421 429 449 463 514 dpmul4 ( ( 1 . 4 2 7 ) · ( 1 . 0 3 9 ) ) < ( 1 . 4 8 3 )
516 375 395 remulcli ( ( 1 . 4 2 7 ) · ( 1 . 0 3 9 ) ) ∈ ℝ
517 345 516 350 lttri ( ( ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( ( 1 . 4 2 7 ) · ( 1 . 0 3 9 ) ) ∧ ( ( 1 . 4 2 7 ) · ( 1 . 0 3 9 ) ) < ( 1 . 4 8 3 ) ) → ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( 1 . 4 8 3 ) )
518 410 515 517 mp2an ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( 1 . 4 8 3 )
519 367 518 pm3.2i ( 0 ≤ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ∧ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( 1 . 4 8 3 ) )
520 351 519 pm3.2i ( ( ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ∈ ℝ ∧ ( 1 . 4 8 3 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ∧ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( 1 . 4 8 3 ) ) )
521 ltmul12a ( ( ( ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) ∈ ℝ ∧ ( 1 . 6 5 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) ∧ ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) < ( 1 . 6 5 1 ) ) ) ∧ ( ( ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ∈ ℝ ∧ ( 1 . 4 8 3 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ∧ ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) < ( 1 . 4 8 3 ) ) ) ) → ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) < ( ( 1 . 6 5 1 ) · ( 1 . 4 8 3 ) ) )
522 316 520 521 mp2an ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) < ( ( 1 . 6 5 1 ) · ( 1 . 4 8 3 ) )
523 24 181 deccl 4 2 ∈ ℕ0
524 496 24 deccl 2 0 4 ∈ ℕ0
525 eqid 2 0 4 2 = 2 0 4 2
526 eqid 4 2 = 4 2
527 eqid 2 0 4 = 2 0 4
528 496 24 24 527 277 decaddi ( 2 0 4 + 4 ) = 2 0 8
529 2p2e4 ( 2 + 2 ) = 4
530 524 181 24 181 525 526 528 529 decadd ( 2 0 4 2 + 4 2 ) = 2 0 8 4
531 448 oveq1i ( ( 6 + 4 ) + 2 ) = ( 1 0 + 2 )
532 dec10p ( 1 0 + 2 ) = 1 2
533 531 532 eqtri ( ( 6 + 4 ) + 2 ) = 1 2
534 1 98 1 24 181 1 181 24 116 204 215 216 533 269 dpmul ( ( 1 . 6 ) · ( 1 . 4 ) ) = ( 2 . 2 4 )
535 8t5e40 ( 8 · 5 ) = 4 0
536 158 256 535 mulcomli ( 5 · 8 ) = 4 0
537 5t3e15 ( 5 · 3 ) = 1 5
538 158 mulid2i ( 1 · 8 ) = 8
539 430 mulid2i ( 1 · 3 ) = 3
540 182 dec0h 3 = 0 3
541 539 540 eqtri ( 1 · 3 ) = 0 3
542 235 nn0cni 1 5 ∈ ℂ
543 8p5e13 ( 8 + 5 ) = 1 3
544 158 256 543 addcomli ( 5 + 8 ) = 1 3
545 1 54 73 245 269 182 544 decaddci ( 1 5 + 8 ) = 2 3
546 542 158 545 addcomli ( 8 + 1 5 ) = 2 3
547 546 oveq1i ( ( 8 + 1 5 ) + 0 ) = ( 2 3 + 0 )
548 181 182 deccl 2 3 ∈ ℕ0
549 548 nn0cni 2 3 ∈ ℂ
550 549 addid1i ( 2 3 + 0 ) = 2 3
551 547 550 eqtri ( ( 8 + 1 5 ) + 0 ) = 2 3
552 eqid 4 0 = 4 0
553 197 addid2i ( 0 + 2 ) = 2
554 24 51 181 552 553 decaddi ( 4 0 + 2 ) = 4 2
555 54 1 73 182 51 181 182 182 536 537 538 541 551 554 dpmul ( ( 5 . 1 ) · ( 8 . 3 ) ) = ( 4 2 . 3 3 )
556 181 181 deccl 2 2 ∈ ℕ0
557 556 24 deccl 2 2 4 ∈ ℕ0
558 eqid 2 2 4 1 = 2 2 4 1
559 eqid 2 0 8 = 2 0 8
560 eqid 2 2 4 = 2 2 4
561 eqid 2 0 = 2 0
562 eqid 2 2 = 2 2
563 181 181 181 562 529 decaddi ( 2 2 + 2 ) = 2 4
564 556 24 181 51 560 561 563 426 decadd ( 2 2 4 + 2 0 ) = 2 4 4
565 557 1 496 73 558 559 564 440 decadd ( 2 2 4 1 + 2 0 8 ) = 2 4 4 9
566 556 98 deccl 2 2 6 ∈ ℕ0
567 523 182 deccl 4 2 3 ∈ ℕ0
568 eqid 2 2 6 6 = 2 2 6 6
569 eqid 4 2 3 3 = 4 2 3 3
570 eqid 2 2 6 = 2 2 6
571 eqid 4 2 3 = 4 2 3
572 113 197 289 addcomli ( 2 + 4 ) = 6
573 181 181 24 181 562 526 572 529 decadd ( 2 2 + 4 2 ) = 6 4
574 556 98 523 182 570 571 573 233 decadd ( 2 2 6 + 4 2 3 ) = 6 4 9
575 566 98 567 182 568 569 574 233 decadd ( 2 2 6 6 + 4 2 3 3 ) = 6 4 9 9
576 556 98 98 523 182 100 182 53 53 575 dpadd3 ( ( 2 2 . 6 6 ) + ( 4 2 . 3 3 ) ) = ( 6 4 . 9 9 )
577 496 nn0cni 2 0 ∈ ℂ
578 181 51 181 561 553 decaddi ( 2 0 + 2 ) = 2 2
579 577 197 578 addcomli ( 2 + 2 0 ) = 2 2
580 181 181 496 24 562 527 579 572 decadd ( 2 2 + 2 0 4 ) = 2 2 6
581 556 24 524 181 560 525 580 289 decadd ( 2 2 4 + 2 0 4 2 ) = 2 2 6 6
582 181 181 24 496 24 556 181 98 98 581 dpadd3 ( ( 2 . 2 4 ) + ( 2 0 . 4 2 ) ) = ( 2 2 . 6 6 )
583 582 oveq1i ( ( ( 2 . 2 4 ) + ( 2 0 . 4 2 ) ) + ( 4 2 . 3 3 ) ) = ( ( 2 2 . 6 6 ) + ( 4 2 . 3 3 ) )
584 eqid 5 1 = 5 1
585 1 98 54 1 135 584 257 140 decadd ( 1 6 + 5 1 ) = 6 7
586 1 98 54 1 98 52 585 dpadd ( ( 1 . 6 ) + ( 5 . 1 ) ) = ( 6 . 7 )
587 eqid 8 3 = 8 3
588 1 24 73 182 268 587 440 302 decadd ( 1 4 + 8 3 ) = 9 7
589 1 24 73 182 53 52 588 dpadd ( ( 1 . 4 ) + ( 8 . 3 ) ) = ( 9 . 7 )
590 586 589 oveq12i ( ( ( 1 . 6 ) + ( 5 . 1 ) ) · ( ( 1 . 4 ) + ( 8 . 3 ) ) ) = ( ( 6 . 7 ) · ( 9 . 7 ) )
591 9t6e54 ( 9 · 6 ) = 5 4
592 196 110 591 mulcomli ( 6 · 9 ) = 5 4
593 7t6e42 ( 7 · 6 ) = 4 2
594 217 110 593 mulcomli ( 6 · 7 ) = 4 2
595 7t7e49 ( 7 · 7 ) = 4 9
596 eqid 6 3 = 6 3
597 3p2e5 ( 3 + 2 ) = 5
598 98 182 24 181 596 526 448 597 decadd ( 6 3 + 4 2 ) = 1 0 5
599 598 oveq1i ( ( 6 3 + 4 2 ) + 4 ) = ( 1 0 5 + 4 )
600 5p4e9 ( 5 + 4 ) = 9
601 130 54 24 502 600 decaddi ( 1 0 5 + 4 ) = 1 0 9
602 599 601 eqtri ( ( 6 3 + 4 2 ) + 4 ) = 1 0 9
603 eqid 5 4 = 5 4
604 54 24 1 51 603 414 246 426 decadd ( 5 4 + 1 0 ) = 6 4
605 98 52 53 52 24 130 53 53 592 594 437 595 602 604 dpmul ( ( 6 . 7 ) · ( 9 . 7 ) ) = ( 6 4 . 9 9 )
606 590 605 eqtri ( ( ( 1 . 6 ) + ( 5 . 1 ) ) · ( ( 1 . 4 ) + ( 8 . 3 ) ) ) = ( 6 4 . 9 9 )
607 576 583 606 3eqtr4ri ( ( ( 1 . 6 ) + ( 5 . 1 ) ) · ( ( 1 . 4 ) + ( 8 . 3 ) ) ) = ( ( ( 2 . 2 4 ) + ( 2 0 . 4 2 ) ) + ( 4 2 . 3 3 ) )
608 1 98 54 1 1 73 181 24 24 182 181 496 24 181 523 182 182 181 51 73 24 181 24 24 53 101 184 184 530 534 555 565 607 dpmul4 ( ( 1 . 6 5 1 ) · ( 1 . 4 8 3 ) ) < ( 2 . 4 4 9 )
609 33 345 remulcli ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ∈ ℝ
610 43 350 remulcli ( ( 1 . 6 5 1 ) · ( 1 . 4 8 3 ) ) ∈ ℝ
611 24 399 rpdp2cl 4 9 ∈ ℝ+
612 24 611 rpdp2cl 4 4 9 ∈ ℝ+
613 181 612 rpdpcl ( 2 . 4 4 9 ) ∈ ℝ+
614 rpre ( ( 2 . 4 4 9 ) ∈ ℝ+ → ( 2 . 4 4 9 ) ∈ ℝ )
615 613 614 ax-mp ( 2 . 4 4 9 ) ∈ ℝ
616 609 610 615 lttri ( ( ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) < ( ( 1 . 6 5 1 ) · ( 1 . 4 8 3 ) ) ∧ ( ( 1 . 6 5 1 ) · ( 1 . 4 8 3 ) ) < ( 2 . 4 4 9 ) ) → ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) < ( 2 . 4 4 9 ) )
617 522 608 616 mp2an ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) < ( 2 . 4 4 9 )
618 3pos 0 < 3
619 609 615 319 ltmul2i ( 0 < 3 → ( ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) < ( 2 . 4 4 9 ) ↔ ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) < ( 3 · ( 2 . 4 4 9 ) ) ) )
620 618 619 ax-mp ( ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) < ( 2 . 4 4 9 ) ↔ ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) < ( 3 · ( 2 . 4 4 9 ) ) )
621 617 620 mpbi ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) < ( 3 · ( 2 . 4 4 9 ) )
622 119 dp2eq2i 0 0 0 = 0 0
623 622 119 eqtri 0 0 0 = 0
624 623 oveq2i ( 3 . 0 0 0 ) = ( 3 . 0 )
625 182 dp0u ( 3 . 0 ) = 3
626 624 625 eqtr2i 3 = ( 3 . 0 0 0 )
627 626 oveq1i ( 3 · ( 2 . 4 4 9 ) ) = ( ( 3 . 0 0 0 ) · ( 2 . 4 4 9 ) )
628 450 52 deccl 1 4 7 ∈ ℕ0
629 628 51 deccl 1 4 7 0 ∈ ℕ0
630 629 nn0cni 1 4 7 0 ∈ ℂ
631 630 addid1i ( 1 4 7 0 + 0 ) = 1 4 7 0
632 4t3e12 ( 4 · 3 ) = 1 2
633 113 430 632 mulcomli ( 3 · 4 ) = 1 2
634 197 mul02i ( 0 · 2 ) = 0
635 113 457 425 mulcomli ( 0 · 4 ) = 0 0
636 51 51 1 181 424 300 153 553 decadd ( 0 + 1 2 ) = 1 2
637 636 oveq1i ( ( 0 + 1 2 ) + 0 ) = ( 1 2 + 0 )
638 281 nn0cni 1 2 ∈ ℂ
639 638 addid1i ( 1 2 + 0 ) = 1 2
640 637 639 eqtri ( ( 0 + 1 2 ) + 0 ) = 1 2
641 182 51 181 24 51 1 181 51 431 633 634 635 640 140 dpmul ( ( 3 . 0 ) · ( 2 . 4 ) ) = ( 7 . 2 0 )
642 51 dp0u ( 0 . 0 ) = 0
643 642 oveq1i ( ( 0 . 0 ) · ( 4 . 9 ) ) = ( 0 · ( 4 . 9 ) )
644 dpcl ( ( 4 ∈ ℕ0 ∧ 9 ∈ ℝ ) → ( 4 . 9 ) ∈ ℝ )
645 24 4 644 mp2an ( 4 . 9 ) ∈ ℝ
646 645 recni ( 4 . 9 ) ∈ ℂ
647 646 mul02i ( 0 · ( 4 . 9 ) ) = 0
648 643 647 eqtri ( ( 0 . 0 ) · ( 4 . 9 ) ) = 0
649 119 oveq2i ( 0 . 0 0 ) = ( 0 . 0 )
650 649 642 eqtri ( 0 . 0 0 ) = 0
651 648 650 eqtr4i ( ( 0 . 0 ) · ( 4 . 9 ) ) = ( 0 . 0 0 )
652 52 181 deccl 7 2 ∈ ℕ0
653 652 51 deccl 7 2 0 ∈ ℕ0
654 eqid 7 2 0 1 = 7 2 0 1
655 eqid 1 4 7 = 1 4 7
656 eqid 7 2 0 = 7 2 0
657 52 181 224 263 decsuc ( 7 2 + 1 ) = 7 3
658 652 51 1 24 656 268 657 114 decadd ( 7 2 0 + 1 4 ) = 7 3 4
659 653 1 450 52 654 655 658 274 decadd ( 7 2 0 1 + 1 4 7 ) = 7 3 4 8
660 642 oveq2i ( ( 3 . 0 ) + ( 0 . 0 ) ) = ( ( 3 . 0 ) + 0 )
661 625 430 eqeltri ( 3 . 0 ) ∈ ℂ
662 661 addid1i ( ( 3 . 0 ) + 0 ) = ( 3 . 0 )
663 660 662 eqtri ( ( 3 . 0 ) + ( 0 . 0 ) ) = ( 3 . 0 )
664 eqid 4 9 = 4 9
665 572 oveq1i ( ( 2 + 4 ) + 1 ) = ( 6 + 1 )
666 665 140 eqtri ( ( 2 + 4 ) + 1 ) = 7
667 9p4e13 ( 9 + 4 ) = 1 3
668 196 113 667 addcomli ( 4 + 9 ) = 1 3
669 181 24 24 53 223 664 666 182 668 decaddc ( 2 4 + 4 9 ) = 7 3
670 181 24 24 53 52 182 669 dpadd ( ( 2 . 4 ) + ( 4 . 9 ) ) = ( 7 . 3 )
671 663 670 oveq12i ( ( ( 3 . 0 ) + ( 0 . 0 ) ) · ( ( 2 . 4 ) + ( 4 . 9 ) ) ) = ( ( 3 . 0 ) · ( 7 . 3 ) )
672 217 430 435 mulcomli ( 3 · 7 ) = 2 1
673 3t3e9 ( 3 · 3 ) = 9
674 217 mul01i ( 7 · 0 ) = 0
675 217 457 674 mulcomli ( 0 · 7 ) = 0
676 430 mul01i ( 3 · 0 ) = 0
677 676 424 eqtri ( 3 · 0 ) = 0 0
678 430 457 677 mulcomli ( 0 · 3 ) = 0 0
679 196 addid1i ( 9 + 0 ) = 9
680 679 oveq1i ( ( 9 + 0 ) + 0 ) = ( 9 + 0 )
681 680 679 188 3eqtri ( ( 9 + 0 ) + 0 ) = 0 9
682 196 457 addcomi ( 9 + 0 ) = ( 0 + 9 )
683 682 oveq1i ( ( 9 + 0 ) + 0 ) = ( ( 0 + 9 ) + 0 )
684 683 eqeq1i ( ( ( 9 + 0 ) + 0 ) = 0 9 ↔ ( ( 0 + 9 ) + 0 ) = 0 9 )
685 681 684 mpbi ( ( 0 + 9 ) + 0 ) = 0 9
686 181 1 51 438 192 decaddi ( 2 1 + 0 ) = 2 1
687 182 51 52 182 51 51 53 51 672 673 675 678 685 686 dpmul ( ( 3 . 0 ) · ( 7 . 3 ) ) = ( 2 1 . 9 0 )
688 671 687 eqtri ( ( ( 3 . 0 ) + ( 0 . 0 ) ) · ( ( 2 . 4 ) + ( 4 . 9 ) ) ) = ( 2 1 . 9 0 )
689 650 oveq2i ( ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) ) + ( 0 . 0 0 ) ) = ( ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) ) + 0 )
690 318 2 pm3.2i ( 2 ∈ ℝ ∧ 0 ∈ ℝ )
691 dp2cl ( ( 2 ∈ ℝ ∧ 0 ∈ ℝ ) → 2 0 ∈ ℝ )
692 690 691 ax-mp 2 0 ∈ ℝ
693 dpcl ( ( 7 ∈ ℕ0 2 0 ∈ ℝ ) → ( 7 . 2 0 ) ∈ ℝ )
694 52 692 693 mp2an ( 7 . 2 0 ) ∈ ℝ
695 694 recni ( 7 . 2 0 ) ∈ ℂ
696 3 2 pm3.2i ( 7 ∈ ℝ ∧ 0 ∈ ℝ )
697 dp2cl ( ( 7 ∈ ℝ ∧ 0 ∈ ℝ ) → 7 0 ∈ ℝ )
698 696 697 ax-mp 7 0 ∈ ℝ
699 dpcl ( ( 1 4 ∈ ℕ0 7 0 ∈ ℝ ) → ( 1 4 . 7 0 ) ∈ ℝ )
700 450 698 699 mp2an ( 1 4 . 7 0 ) ∈ ℝ
701 700 recni ( 1 4 . 7 0 ) ∈ ℂ
702 695 701 addcli ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) ) ∈ ℂ
703 702 addid1i ( ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) ) + 0 ) = ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) )
704 eqid 1 4 7 0 = 1 4 7 0
705 450 nn0cni 1 4 ∈ ℂ
706 705 217 270 addcomli ( 7 + 1 4 ) = 2 1
707 7p2e9 ( 7 + 2 ) = 9
708 217 197 707 addcomli ( 2 + 7 ) = 9
709 52 181 450 52 263 655 706 708 decadd ( 7 2 + 1 4 7 ) = 2 1 9
710 00id ( 0 + 0 ) = 0
711 652 51 628 51 656 704 709 710 decadd ( 7 2 0 + 1 4 7 0 ) = 2 1 9 0
712 52 181 51 450 52 293 51 53 51 711 dpadd3 ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) ) = ( 2 1 . 9 0 )
713 689 703 712 3eqtri ( ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) ) + ( 0 . 0 0 ) ) = ( 2 1 . 9 0 )
714 688 713 eqtr4i ( ( ( 3 . 0 ) + ( 0 . 0 ) ) · ( ( 2 . 4 ) + ( 4 . 9 ) ) ) = ( ( ( 7 . 2 0 ) + ( 1 4 . 7 0 ) ) + ( 0 . 0 0 ) )
715 182 51 51 51 181 24 181 51 24 53 52 450 52 51 51 51 51 1 24 52 51 52 182 24 73 102 102 102 631 641 651 659 714 dpmul4 ( ( 3 . 0 0 0 ) · ( 2 . 4 4 9 ) ) < ( 7 . 3 4 8 )
716 627 715 eqbrtri ( 3 · ( 2 . 4 4 9 ) ) < ( 7 . 3 4 8 )
717 319 609 remulcli ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) ∈ ℝ
718 319 615 remulcli ( 3 · ( 2 . 4 4 9 ) ) ∈ ℝ
719 nnrp ( 8 ∈ ℕ → 8 ∈ ℝ+ )
720 63 719 ax-mp 8 ∈ ℝ+
721 24 720 rpdp2cl 4 8 ∈ ℝ+
722 182 721 rpdp2cl 3 4 8 ∈ ℝ+
723 52 722 rpdpcl ( 7 . 3 4 8 ) ∈ ℝ+
724 rpre ( ( 7 . 3 4 8 ) ∈ ℝ+ → ( 7 . 3 4 8 ) ∈ ℝ )
725 723 724 ax-mp ( 7 . 3 4 8 ) ∈ ℝ
726 717 718 725 lttri ( ( ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) < ( 3 · ( 2 . 4 4 9 ) ) ∧ ( 3 · ( 2 . 4 4 9 ) ) < ( 7 . 3 4 8 ) ) → ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) < ( 7 . 3 4 8 ) )
727 621 716 726 mp2an ( 3 · ( ( ( ( 1 . 0 7 9 9 5 5 ) ↑ 2 ) · ( 1 . 4 1 4 ) ) · ( ( 1 . 4 2 6 3 ) · ( 1 . 0 3 8 8 3 ) ) ) ) < ( 7 . 3 4 8 )