| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgt750leme.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
| 2 |
|
hgt750leme.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
hgt750lemb.2 |
⊢ ( 𝜑 → 2 ≤ 𝑁 ) |
| 4 |
|
hgt750lemb.a |
⊢ 𝐴 = { 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) } |
| 5 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
| 8 |
|
ssidd |
⊢ ( 𝜑 → ℕ ⊆ ℕ ) |
| 9 |
5 7 8
|
reprfi2 |
⊢ ( 𝜑 → ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin ) |
| 10 |
4
|
ssrab3 |
⊢ 𝐴 ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) |
| 11 |
|
ssfi |
⊢ ( ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin ∧ 𝐴 ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝐴 ∈ Fin ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 13 |
|
vmaf |
⊢ Λ : ℕ ⟶ ℝ |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → Λ : ℕ ⟶ ℝ ) |
| 15 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ℕ ⊆ ℕ ) |
| 16 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑁 ∈ ℤ ) |
| 18 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 3 ∈ ℕ0 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ 𝐴 ) |
| 20 |
10 19
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
| 21 |
15 17 18 20
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) |
| 22 |
|
c0ex |
⊢ 0 ∈ V |
| 23 |
22
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
| 24 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 25 |
23 24
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
| 26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ∈ ( 0 ..^ 3 ) ) |
| 27 |
21 26
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℕ ) |
| 28 |
14 27
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ ) |
| 29 |
|
1ex |
⊢ 1 ∈ V |
| 30 |
29
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
| 31 |
30 24
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
| 32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 1 ∈ ( 0 ..^ 3 ) ) |
| 33 |
21 32
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℕ ) |
| 34 |
14 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ ) |
| 35 |
|
2ex |
⊢ 2 ∈ V |
| 36 |
35
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
| 37 |
36 24
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
| 38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 2 ∈ ( 0 ..^ 3 ) ) |
| 39 |
21 38
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℕ ) |
| 40 |
14 39
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
| 41 |
34 40
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ ) |
| 42 |
28 41
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
| 43 |
12 42
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
| 44 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 45 |
44
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 46 |
28 34
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ ) |
| 47 |
12 46
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ ) |
| 48 |
45 47
|
remulcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ∈ ℝ ) |
| 49 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 50 |
|
diffi |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin ) |
| 51 |
49 50
|
ax-mp |
⊢ ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin |
| 52 |
|
snfi |
⊢ { 2 } ∈ Fin |
| 53 |
|
unfi |
⊢ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin ∧ { 2 } ∈ Fin ) → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin ) |
| 54 |
51 52 53
|
mp2an |
⊢ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin |
| 55 |
54
|
a1i |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin ) |
| 56 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → Λ : ℕ ⟶ ℝ ) |
| 57 |
|
difss |
⊢ ( ( 1 ... 𝑁 ) ∖ ℙ ) ⊆ ( 1 ... 𝑁 ) |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ ℙ ) ⊆ ( 1 ... 𝑁 ) ) |
| 59 |
|
2nn |
⊢ 2 ∈ ℕ |
| 60 |
59
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 61 |
|
elfz1b |
⊢ ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁 ) ) |
| 62 |
61
|
biimpri |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁 ) → 2 ∈ ( 1 ... 𝑁 ) ) |
| 63 |
60 2 3 62
|
syl3anc |
⊢ ( 𝜑 → 2 ∈ ( 1 ... 𝑁 ) ) |
| 64 |
63
|
snssd |
⊢ ( 𝜑 → { 2 } ⊆ ( 1 ... 𝑁 ) ) |
| 65 |
58 64
|
unssd |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ( 1 ... 𝑁 ) ) |
| 66 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 67 |
66
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 68 |
65 67
|
sstrd |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ℕ ) |
| 69 |
68
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → 𝑖 ∈ ℕ ) |
| 70 |
56 69
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ ) |
| 71 |
55 70
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) ∈ ℝ ) |
| 72 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 73 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → Λ : ℕ ⟶ ℝ ) |
| 74 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ℕ ) |
| 75 |
73 74
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ ) |
| 76 |
72 75
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ∈ ℝ ) |
| 77 |
71 76
|
remulcld |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ∈ ℝ ) |
| 78 |
45 77
|
remulcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑁 ∈ ℕ ) |
| 80 |
79
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑁 ∈ ℝ+ ) |
| 81 |
|
relogcl |
⊢ ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 83 |
34 82
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 84 |
28 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ∈ ℝ ) |
| 85 |
|
vmage0 |
⊢ ( ( 𝑛 ‘ 0 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
| 86 |
27 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
| 87 |
|
vmage0 |
⊢ ( ( 𝑛 ‘ 1 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
| 88 |
33 87
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
| 89 |
39
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℝ+ ) |
| 90 |
89
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
| 91 |
|
vmalelog |
⊢ ( ( 𝑛 ‘ 2 ) ∈ ℕ → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ ( 𝑛 ‘ 2 ) ) ) |
| 92 |
39 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ ( 𝑛 ‘ 2 ) ) ) |
| 93 |
15 17 18 20 38
|
reprle |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ≤ 𝑁 ) |
| 94 |
|
logleb |
⊢ ( ( ( 𝑛 ‘ 2 ) ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑛 ‘ 2 ) ≤ 𝑁 ↔ ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) ) |
| 95 |
94
|
biimpa |
⊢ ( ( ( ( 𝑛 ‘ 2 ) ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 𝑛 ‘ 2 ) ≤ 𝑁 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) |
| 96 |
89 80 93 95
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) |
| 97 |
40 90 82 92 96
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) |
| 98 |
40 82 34 88 97
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ≤ ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) |
| 99 |
41 83 28 86 98
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
| 100 |
12 42 84 99
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
| 101 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 102 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 103 |
101 102
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 104 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℂ ) |
| 105 |
12 103 104
|
fsummulc2 |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = Σ 𝑛 ∈ 𝐴 ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) |
| 106 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 107 |
106 104
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) · ( log ‘ 𝑁 ) ) ) |
| 108 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℂ ) |
| 109 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℂ ) |
| 110 |
108 109 106
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) · ( log ‘ 𝑁 ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
| 111 |
107 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
| 112 |
111
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
| 113 |
105 112
|
eqtr2d |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) = ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) |
| 114 |
100 113
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) |
| 115 |
2
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 116 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
| 117 |
115 116
|
logge0d |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝑁 ) ) |
| 118 |
|
xpfi |
⊢ ( ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
| 119 |
55 72 118
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
| 120 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → Λ : ℕ ⟶ ℝ ) |
| 121 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ℕ ) |
| 122 |
|
xp1st |
⊢ ( 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑢 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) |
| 123 |
122
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) |
| 124 |
121 123
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ℕ ) |
| 125 |
120 124
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( Λ ‘ ( 1st ‘ 𝑢 ) ) ∈ ℝ ) |
| 126 |
|
xp2nd |
⊢ ( 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ( 2nd ‘ 𝑢 ) ∈ ( 1 ... 𝑁 ) ) |
| 127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 2nd ‘ 𝑢 ) ∈ ( 1 ... 𝑁 ) ) |
| 128 |
66 127
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 2nd ‘ 𝑢 ) ∈ ℕ ) |
| 129 |
120 128
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ∈ ℝ ) |
| 130 |
125 129
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ∈ ℝ ) |
| 131 |
|
vmage0 |
⊢ ( ( 1st ‘ 𝑢 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 1st ‘ 𝑢 ) ) ) |
| 132 |
124 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( Λ ‘ ( 1st ‘ 𝑢 ) ) ) |
| 133 |
|
vmage0 |
⊢ ( ( 2nd ‘ 𝑢 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) |
| 134 |
128 133
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) |
| 135 |
125 129 132 134
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ) |
| 136 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ℕ ⊆ ℕ ) |
| 137 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑁 ∈ ℤ ) |
| 138 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 3 ∈ ℕ0 ) |
| 139 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ 𝐴 ) |
| 140 |
10 139
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
| 141 |
136 137 138 140
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 : ( 0 ..^ 3 ) ⟶ ℕ ) |
| 142 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 0 ∈ ( 0 ..^ 3 ) ) |
| 143 |
141 142
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ℕ ) |
| 144 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑁 ∈ ℕ ) |
| 145 |
136 137 138 140 142
|
reprle |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ≤ 𝑁 ) |
| 146 |
|
elfz1b |
⊢ ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑐 ‘ 0 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 0 ) ≤ 𝑁 ) ) |
| 147 |
146
|
biimpri |
⊢ ( ( ( 𝑐 ‘ 0 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 0 ) ≤ 𝑁 ) → ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ) |
| 148 |
143 144 145 147
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ) |
| 149 |
4
|
reqabi |
⊢ ( 𝑐 ∈ 𝐴 ↔ ( 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) ) |
| 150 |
149
|
simprbi |
⊢ ( 𝑐 ∈ 𝐴 → ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) |
| 151 |
1
|
oddprm2 |
⊢ ( ℙ ∖ { 2 } ) = ( 𝑂 ∩ ℙ ) |
| 152 |
151
|
eleq2i |
⊢ ( ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) |
| 153 |
150 152
|
sylnibr |
⊢ ( 𝑐 ∈ 𝐴 → ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) |
| 154 |
139 153
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) |
| 155 |
148 154
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
| 156 |
|
eldif |
⊢ ( ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ↔ ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
| 157 |
155 156
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) |
| 158 |
|
uncom |
⊢ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( { 2 } ∪ ( ( 1 ... 𝑁 ) ∖ ℙ ) ) |
| 159 |
|
undif3 |
⊢ ( { 2 } ∪ ( ( 1 ... 𝑁 ) ∖ ℙ ) ) = ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) ) |
| 160 |
158 159
|
eqtri |
⊢ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) ) |
| 161 |
|
ssequn1 |
⊢ ( { 2 } ⊆ ( 1 ... 𝑁 ) ↔ ( { 2 } ∪ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 162 |
64 161
|
sylib |
⊢ ( 𝜑 → ( { 2 } ∪ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 163 |
162
|
difeq1d |
⊢ ( 𝜑 → ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) ) = ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) |
| 164 |
160 163
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) |
| 165 |
164
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) ) |
| 166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) ) |
| 167 |
157 166
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) |
| 168 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ( 0 ..^ 3 ) ) |
| 169 |
141 168
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℕ ) |
| 170 |
136 137 138 140 168
|
reprle |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ≤ 𝑁 ) |
| 171 |
|
elfz1b |
⊢ ( ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑐 ‘ 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 1 ) ≤ 𝑁 ) ) |
| 172 |
171
|
biimpri |
⊢ ( ( ( 𝑐 ‘ 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 1 ) ≤ 𝑁 ) → ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 173 |
169 144 170 172
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 174 |
167 173
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
| 175 |
174
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
| 176 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
| 177 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 1 ) = ( 𝑐 ‘ 1 ) ) |
| 178 |
176 177
|
opeq12d |
⊢ ( 𝑑 = 𝑐 → 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
| 179 |
178
|
cbvmptv |
⊢ ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ( 𝑐 ∈ 𝐴 ↦ 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
| 180 |
179
|
rnmptss |
⊢ ( ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ⊆ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
| 181 |
175 180
|
syl |
⊢ ( 𝜑 → ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ⊆ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
| 182 |
119 130 135 181
|
fsumless |
⊢ ( 𝜑 → Σ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ≤ Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ) |
| 183 |
|
fvex |
⊢ ( 𝑛 ‘ 0 ) ∈ V |
| 184 |
|
fvex |
⊢ ( 𝑛 ‘ 1 ) ∈ V |
| 185 |
183 184
|
op1std |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( 1st ‘ 𝑢 ) = ( 𝑛 ‘ 0 ) ) |
| 186 |
185
|
fveq2d |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( Λ ‘ ( 1st ‘ 𝑢 ) ) = ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
| 187 |
183 184
|
op2ndd |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( 2nd ‘ 𝑢 ) = ( 𝑛 ‘ 1 ) ) |
| 188 |
187
|
fveq2d |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) = ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
| 189 |
186 188
|
oveq12d |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) |
| 190 |
|
opex |
⊢ 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V |
| 191 |
190
|
rgenw |
⊢ ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V |
| 192 |
179
|
fnmpt |
⊢ ( ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ) |
| 193 |
191 192
|
mp1i |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ) |
| 194 |
|
eqidd |
⊢ ( 𝜑 → ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) |
| 195 |
141
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑐 : ( 0 ..^ 3 ) ⟶ ℕ ) |
| 196 |
195
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑐 Fn ( 0 ..^ 3 ) ) |
| 197 |
21
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) |
| 198 |
197
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑛 Fn ( 0 ..^ 3 ) ) |
| 199 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) |
| 200 |
179
|
a1i |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ( 𝑐 ∈ 𝐴 ↦ 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) ) |
| 201 |
190
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V ) |
| 202 |
200 201
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
| 203 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
| 204 |
203
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
| 205 |
|
fveq1 |
⊢ ( 𝑐 = 𝑛 → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
| 206 |
|
fveq1 |
⊢ ( 𝑐 = 𝑛 → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
| 207 |
205 206
|
opeq12d |
⊢ ( 𝑐 = 𝑛 → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
| 208 |
|
opex |
⊢ 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ∈ V |
| 209 |
208
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ∈ V ) |
| 210 |
179 207 19 209
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
| 211 |
210
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
| 212 |
211
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
| 213 |
199 204 212
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
| 214 |
183 184
|
opth2 |
⊢ ( 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ↔ ( ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ∧ ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) ) |
| 215 |
213 214
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ∧ ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) ) |
| 216 |
215
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
| 217 |
216
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
| 218 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → 𝑖 = 0 ) |
| 219 |
218
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 0 ) ) |
| 220 |
218
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑛 ‘ 𝑖 ) = ( 𝑛 ‘ 0 ) ) |
| 221 |
217 219 220
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
| 222 |
215
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
| 223 |
222
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
| 224 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → 𝑖 = 1 ) |
| 225 |
224
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 1 ) ) |
| 226 |
224
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑛 ‘ 𝑖 ) = ( 𝑛 ‘ 1 ) ) |
| 227 |
223 225 226
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
| 228 |
216
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
| 229 |
222
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
| 230 |
228 229
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) = ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) |
| 231 |
230
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) ) |
| 232 |
24
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
| 233 |
232
|
sumeq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑐 ‘ 𝑗 ) ) |
| 234 |
|
ssidd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ℕ ⊆ ℕ ) |
| 235 |
137
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑁 ∈ ℤ ) |
| 236 |
6
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 3 ∈ ℕ0 ) |
| 237 |
140
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
| 238 |
234 235 236 237
|
reprsum |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ) |
| 239 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 0 ) ) |
| 240 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 1 ) ) |
| 241 |
|
fveq2 |
⊢ ( 𝑗 = 2 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 2 ) ) |
| 242 |
143
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ℂ ) |
| 243 |
242
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 0 ) ∈ ℂ ) |
| 244 |
169
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℂ ) |
| 245 |
244
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 1 ) ∈ ℂ ) |
| 246 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 2 ∈ ( 0 ..^ 3 ) ) |
| 247 |
141 246
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 2 ) ∈ ℕ ) |
| 248 |
247
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 2 ) ∈ ℂ ) |
| 249 |
248
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) ∈ ℂ ) |
| 250 |
243 245 249
|
3jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) ∈ ℂ ∧ ( 𝑐 ‘ 1 ) ∈ ℂ ∧ ( 𝑐 ‘ 2 ) ∈ ℂ ) ) |
| 251 |
22 29 35
|
3pm3.2i |
⊢ ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) |
| 252 |
251
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) ) |
| 253 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 254 |
253
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 0 ≠ 1 ) |
| 255 |
|
0ne2 |
⊢ 0 ≠ 2 |
| 256 |
255
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 0 ≠ 2 ) |
| 257 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 258 |
257
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 1 ≠ 2 ) |
| 259 |
239 240 241 250 252 254 256 258
|
sumtp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑐 ‘ 𝑗 ) = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) |
| 260 |
233 238 259
|
3eqtr3rd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) = 𝑁 ) |
| 261 |
243 245
|
addcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ∈ ℂ ) |
| 262 |
101
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑁 ∈ ℂ ) |
| 263 |
261 249 262
|
addrsub |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) = 𝑁 ↔ ( 𝑐 ‘ 2 ) = ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) ) ) |
| 264 |
260 263
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) = ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) ) |
| 265 |
232
|
sumeq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑛 ‘ 𝑗 ) = Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑛 ‘ 𝑗 ) ) |
| 266 |
20
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
| 267 |
266
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
| 268 |
234 235 236 267
|
reprsum |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑛 ‘ 𝑗 ) = 𝑁 ) |
| 269 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝑛 ‘ 𝑗 ) = ( 𝑛 ‘ 0 ) ) |
| 270 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝑛 ‘ 𝑗 ) = ( 𝑛 ‘ 1 ) ) |
| 271 |
|
fveq2 |
⊢ ( 𝑗 = 2 → ( 𝑛 ‘ 𝑗 ) = ( 𝑛 ‘ 2 ) ) |
| 272 |
27
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℂ ) |
| 273 |
272
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℂ ) |
| 274 |
273
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 0 ) ∈ ℂ ) |
| 275 |
33
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℂ ) |
| 276 |
275
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℂ ) |
| 277 |
276
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 1 ) ∈ ℂ ) |
| 278 |
39
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℂ ) |
| 279 |
278
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℂ ) |
| 280 |
279
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 2 ) ∈ ℂ ) |
| 281 |
274 277 280
|
3jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑛 ‘ 0 ) ∈ ℂ ∧ ( 𝑛 ‘ 1 ) ∈ ℂ ∧ ( 𝑛 ‘ 2 ) ∈ ℂ ) ) |
| 282 |
269 270 271 281 252 254 256 258
|
sumtp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑛 ‘ 𝑗 ) = ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) ) |
| 283 |
265 268 282
|
3eqtr3rd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) = 𝑁 ) |
| 284 |
274 277
|
addcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ∈ ℂ ) |
| 285 |
284 280 262
|
addrsub |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) = 𝑁 ↔ ( 𝑛 ‘ 2 ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) ) ) |
| 286 |
283 285
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 2 ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) ) |
| 287 |
231 264 286
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) = ( 𝑛 ‘ 2 ) ) |
| 288 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑖 = 2 ) |
| 289 |
288
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 2 ) ) |
| 290 |
288
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 𝑖 ) = ( 𝑛 ‘ 2 ) ) |
| 291 |
287 289 290
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
| 292 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → 𝑖 ∈ ( 0 ..^ 3 ) ) |
| 293 |
292 24
|
eleqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → 𝑖 ∈ { 0 , 1 , 2 } ) |
| 294 |
|
vex |
⊢ 𝑖 ∈ V |
| 295 |
294
|
eltp |
⊢ ( 𝑖 ∈ { 0 , 1 , 2 } ↔ ( 𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2 ) ) |
| 296 |
293 295
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → ( 𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2 ) ) |
| 297 |
221 227 291 296
|
mpjao3dan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
| 298 |
196 198 297
|
eqfnfvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑐 = 𝑛 ) |
| 299 |
298
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) |
| 300 |
299
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) → ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) |
| 301 |
300
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) |
| 302 |
|
dff1o6 |
⊢ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ↔ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) ) |
| 303 |
302
|
biimpri |
⊢ ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) |
| 304 |
193 194 301 303
|
syl3anc |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) |
| 305 |
181
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
| 306 |
305 125
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( Λ ‘ ( 1st ‘ 𝑢 ) ) ∈ ℝ ) |
| 307 |
305 129
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ∈ ℝ ) |
| 308 |
306 307
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ∈ ℝ ) |
| 309 |
308
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ∈ ℂ ) |
| 310 |
189 12 304 210 309
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) |
| 311 |
76
|
recnd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ∈ ℂ ) |
| 312 |
70
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( Λ ‘ 𝑖 ) ∈ ℂ ) |
| 313 |
55 311 312
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) |
| 314 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 315 |
75
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ ) |
| 316 |
315
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ ) |
| 317 |
316
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℂ ) |
| 318 |
314 312 317
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ) |
| 319 |
318
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ) |
| 320 |
|
vex |
⊢ 𝑗 ∈ V |
| 321 |
294 320
|
op1std |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( 1st ‘ 𝑢 ) = 𝑖 ) |
| 322 |
321
|
fveq2d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( Λ ‘ ( 1st ‘ 𝑢 ) ) = ( Λ ‘ 𝑖 ) ) |
| 323 |
294 320
|
op2ndd |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( 2nd ‘ 𝑢 ) = 𝑗 ) |
| 324 |
323
|
fveq2d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) = ( Λ ‘ 𝑗 ) ) |
| 325 |
322 324
|
oveq12d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ) |
| 326 |
70
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ ) |
| 327 |
326 315
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ∈ ℝ ) |
| 328 |
327
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ∈ ℂ ) |
| 329 |
325 55 72 328
|
fsumxp |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) = Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ) |
| 330 |
313 319 329
|
3eqtrrd |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) |
| 331 |
182 310 330
|
3brtr3d |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ≤ ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) |
| 332 |
47 77 45 117 331
|
lemul2ad |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ) |
| 333 |
43 48 78 114 332
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ) |