Step |
Hyp |
Ref |
Expression |
1 |
|
hgt750leme.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
hgt750leme.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
hgt750lemb.2 |
⊢ ( 𝜑 → 2 ≤ 𝑁 ) |
4 |
|
hgt750lemb.a |
⊢ 𝐴 = { 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) } |
5 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
7 |
6
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
8 |
|
ssidd |
⊢ ( 𝜑 → ℕ ⊆ ℕ ) |
9 |
5 7 8
|
reprfi2 |
⊢ ( 𝜑 → ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin ) |
10 |
4
|
ssrab3 |
⊢ 𝐴 ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) |
11 |
|
ssfi |
⊢ ( ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin ∧ 𝐴 ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝐴 ∈ Fin ) |
12 |
9 10 11
|
sylancl |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
13 |
|
vmaf |
⊢ Λ : ℕ ⟶ ℝ |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → Λ : ℕ ⟶ ℝ ) |
15 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ℕ ⊆ ℕ ) |
16 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑁 ∈ ℤ ) |
18 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 3 ∈ ℕ0 ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ 𝐴 ) |
20 |
10 19
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
21 |
15 17 18 20
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) |
22 |
|
c0ex |
⊢ 0 ∈ V |
23 |
22
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
24 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
25 |
23 24
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ∈ ( 0 ..^ 3 ) ) |
27 |
21 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℕ ) |
28 |
14 27
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ ) |
29 |
|
1ex |
⊢ 1 ∈ V |
30 |
29
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
31 |
30 24
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 1 ∈ ( 0 ..^ 3 ) ) |
33 |
21 32
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℕ ) |
34 |
14 33
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ ) |
35 |
|
2ex |
⊢ 2 ∈ V |
36 |
35
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
37 |
36 24
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 2 ∈ ( 0 ..^ 3 ) ) |
39 |
21 38
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℕ ) |
40 |
14 39
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
41 |
34 40
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ ) |
42 |
28 41
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
43 |
12 42
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
44 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
45 |
44
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
46 |
28 34
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ ) |
47 |
12 46
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ ) |
48 |
45 47
|
remulcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ∈ ℝ ) |
49 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
50 |
|
diffi |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin ) |
51 |
49 50
|
ax-mp |
⊢ ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin |
52 |
|
snfi |
⊢ { 2 } ∈ Fin |
53 |
|
unfi |
⊢ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin ∧ { 2 } ∈ Fin ) → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin ) |
54 |
51 52 53
|
mp2an |
⊢ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin |
55 |
54
|
a1i |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin ) |
56 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → Λ : ℕ ⟶ ℝ ) |
57 |
|
difss |
⊢ ( ( 1 ... 𝑁 ) ∖ ℙ ) ⊆ ( 1 ... 𝑁 ) |
58 |
57
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ ℙ ) ⊆ ( 1 ... 𝑁 ) ) |
59 |
|
2nn |
⊢ 2 ∈ ℕ |
60 |
59
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
61 |
|
elfz1b |
⊢ ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁 ) ) |
62 |
61
|
biimpri |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁 ) → 2 ∈ ( 1 ... 𝑁 ) ) |
63 |
60 2 3 62
|
syl3anc |
⊢ ( 𝜑 → 2 ∈ ( 1 ... 𝑁 ) ) |
64 |
63
|
snssd |
⊢ ( 𝜑 → { 2 } ⊆ ( 1 ... 𝑁 ) ) |
65 |
58 64
|
unssd |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ( 1 ... 𝑁 ) ) |
66 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
67 |
66
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ ) |
68 |
65 67
|
sstrd |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ℕ ) |
69 |
68
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → 𝑖 ∈ ℕ ) |
70 |
56 69
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ ) |
71 |
55 70
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) ∈ ℝ ) |
72 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
73 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → Λ : ℕ ⟶ ℝ ) |
74 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ℕ ) |
75 |
73 74
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ ) |
76 |
72 75
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ∈ ℝ ) |
77 |
71 76
|
remulcld |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ∈ ℝ ) |
78 |
45 77
|
remulcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ∈ ℝ ) |
79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑁 ∈ ℕ ) |
80 |
79
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑁 ∈ ℝ+ ) |
81 |
|
relogcl |
⊢ ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℝ ) |
82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ 𝑁 ) ∈ ℝ ) |
83 |
34 82
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ∈ ℝ ) |
84 |
28 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ∈ ℝ ) |
85 |
|
vmage0 |
⊢ ( ( 𝑛 ‘ 0 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
86 |
27 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
87 |
|
vmage0 |
⊢ ( ( 𝑛 ‘ 1 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
88 |
33 87
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
89 |
39
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℝ+ ) |
90 |
89
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
91 |
|
vmalelog |
⊢ ( ( 𝑛 ‘ 2 ) ∈ ℕ → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ ( 𝑛 ‘ 2 ) ) ) |
92 |
39 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ ( 𝑛 ‘ 2 ) ) ) |
93 |
15 17 18 20 38
|
reprle |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ≤ 𝑁 ) |
94 |
|
logleb |
⊢ ( ( ( 𝑛 ‘ 2 ) ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑛 ‘ 2 ) ≤ 𝑁 ↔ ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) ) |
95 |
94
|
biimpa |
⊢ ( ( ( ( 𝑛 ‘ 2 ) ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 𝑛 ‘ 2 ) ≤ 𝑁 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) |
96 |
89 80 93 95
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) |
97 |
40 90 82 92 96
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) |
98 |
40 82 34 88 97
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ≤ ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) |
99 |
41 83 28 86 98
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
100 |
12 42 84 99
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
101 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
102 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
103 |
101 102
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ ) |
104 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℂ ) |
105 |
12 103 104
|
fsummulc2 |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = Σ 𝑛 ∈ 𝐴 ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) |
106 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( log ‘ 𝑁 ) ∈ ℂ ) |
107 |
106 104
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) · ( log ‘ 𝑁 ) ) ) |
108 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℂ ) |
109 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℂ ) |
110 |
108 109 106
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) · ( log ‘ 𝑁 ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
111 |
107 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
112 |
111
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ) |
113 |
105 112
|
eqtr2d |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) = ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) |
114 |
100 113
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) |
115 |
2
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
116 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
117 |
115 116
|
logge0d |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝑁 ) ) |
118 |
|
xpfi |
⊢ ( ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
119 |
55 72 118
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
120 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → Λ : ℕ ⟶ ℝ ) |
121 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ℕ ) |
122 |
|
xp1st |
⊢ ( 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑢 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) |
123 |
122
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) |
124 |
121 123
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 1st ‘ 𝑢 ) ∈ ℕ ) |
125 |
120 124
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( Λ ‘ ( 1st ‘ 𝑢 ) ) ∈ ℝ ) |
126 |
|
xp2nd |
⊢ ( 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ( 2nd ‘ 𝑢 ) ∈ ( 1 ... 𝑁 ) ) |
127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 2nd ‘ 𝑢 ) ∈ ( 1 ... 𝑁 ) ) |
128 |
66 127
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 2nd ‘ 𝑢 ) ∈ ℕ ) |
129 |
120 128
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ∈ ℝ ) |
130 |
125 129
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ∈ ℝ ) |
131 |
|
vmage0 |
⊢ ( ( 1st ‘ 𝑢 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 1st ‘ 𝑢 ) ) ) |
132 |
124 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( Λ ‘ ( 1st ‘ 𝑢 ) ) ) |
133 |
|
vmage0 |
⊢ ( ( 2nd ‘ 𝑢 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) |
134 |
128 133
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) |
135 |
125 129 132 134
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ) |
136 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ℕ ⊆ ℕ ) |
137 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑁 ∈ ℤ ) |
138 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 3 ∈ ℕ0 ) |
139 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ 𝐴 ) |
140 |
10 139
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
141 |
136 137 138 140
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 : ( 0 ..^ 3 ) ⟶ ℕ ) |
142 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 0 ∈ ( 0 ..^ 3 ) ) |
143 |
141 142
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ℕ ) |
144 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑁 ∈ ℕ ) |
145 |
136 137 138 140 142
|
reprle |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ≤ 𝑁 ) |
146 |
|
elfz1b |
⊢ ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑐 ‘ 0 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 0 ) ≤ 𝑁 ) ) |
147 |
146
|
biimpri |
⊢ ( ( ( 𝑐 ‘ 0 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 0 ) ≤ 𝑁 ) → ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ) |
148 |
143 144 145 147
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ) |
149 |
4
|
rabeq2i |
⊢ ( 𝑐 ∈ 𝐴 ↔ ( 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) ) |
150 |
149
|
simprbi |
⊢ ( 𝑐 ∈ 𝐴 → ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) |
151 |
1
|
oddprm2 |
⊢ ( ℙ ∖ { 2 } ) = ( 𝑂 ∩ ℙ ) |
152 |
151
|
eleq2i |
⊢ ( ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) |
153 |
150 152
|
sylnibr |
⊢ ( 𝑐 ∈ 𝐴 → ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) |
154 |
139 153
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) |
155 |
148 154
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
156 |
|
eldif |
⊢ ( ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ↔ ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
157 |
155 156
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) |
158 |
|
uncom |
⊢ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( { 2 } ∪ ( ( 1 ... 𝑁 ) ∖ ℙ ) ) |
159 |
|
undif3 |
⊢ ( { 2 } ∪ ( ( 1 ... 𝑁 ) ∖ ℙ ) ) = ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) ) |
160 |
158 159
|
eqtri |
⊢ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) ) |
161 |
|
ssequn1 |
⊢ ( { 2 } ⊆ ( 1 ... 𝑁 ) ↔ ( { 2 } ∪ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
162 |
64 161
|
sylib |
⊢ ( 𝜑 → ( { 2 } ∪ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
163 |
162
|
difeq1d |
⊢ ( 𝜑 → ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) ) = ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) |
164 |
160 163
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) |
165 |
164
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) ) |
166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) ) |
167 |
157 166
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) |
168 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 1 ∈ ( 0 ..^ 3 ) ) |
169 |
141 168
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℕ ) |
170 |
136 137 138 140 168
|
reprle |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ≤ 𝑁 ) |
171 |
|
elfz1b |
⊢ ( ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑐 ‘ 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 1 ) ≤ 𝑁 ) ) |
172 |
171
|
biimpri |
⊢ ( ( ( 𝑐 ‘ 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 1 ) ≤ 𝑁 ) → ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) |
173 |
169 144 170 172
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) |
174 |
167 173
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
175 |
174
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
176 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
177 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 1 ) = ( 𝑐 ‘ 1 ) ) |
178 |
176 177
|
opeq12d |
⊢ ( 𝑑 = 𝑐 → 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
179 |
178
|
cbvmptv |
⊢ ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ( 𝑐 ∈ 𝐴 ↦ 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
180 |
179
|
rnmptss |
⊢ ( ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ⊆ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
181 |
175 180
|
syl |
⊢ ( 𝜑 → ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ⊆ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
182 |
119 130 135 181
|
fsumless |
⊢ ( 𝜑 → Σ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ≤ Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ) |
183 |
|
fvex |
⊢ ( 𝑛 ‘ 0 ) ∈ V |
184 |
|
fvex |
⊢ ( 𝑛 ‘ 1 ) ∈ V |
185 |
183 184
|
op1std |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( 1st ‘ 𝑢 ) = ( 𝑛 ‘ 0 ) ) |
186 |
185
|
fveq2d |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( Λ ‘ ( 1st ‘ 𝑢 ) ) = ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
187 |
183 184
|
op2ndd |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( 2nd ‘ 𝑢 ) = ( 𝑛 ‘ 1 ) ) |
188 |
187
|
fveq2d |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) = ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
189 |
186 188
|
oveq12d |
⊢ ( 𝑢 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) |
190 |
|
opex |
⊢ 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V |
191 |
190
|
rgenw |
⊢ ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V |
192 |
179
|
fnmpt |
⊢ ( ∀ 𝑐 ∈ 𝐴 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ) |
193 |
191 192
|
mp1i |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ) |
194 |
|
eqidd |
⊢ ( 𝜑 → ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) |
195 |
141
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑐 : ( 0 ..^ 3 ) ⟶ ℕ ) |
196 |
195
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑐 Fn ( 0 ..^ 3 ) ) |
197 |
21
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) |
198 |
197
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑛 Fn ( 0 ..^ 3 ) ) |
199 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) |
200 |
179
|
a1i |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ( 𝑐 ∈ 𝐴 ↦ 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) ) |
201 |
190
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ∈ V ) |
202 |
200 201
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
203 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
204 |
203
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 ) |
205 |
|
fveq1 |
⊢ ( 𝑐 = 𝑛 → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
206 |
|
fveq1 |
⊢ ( 𝑐 = 𝑛 → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
207 |
205 206
|
opeq12d |
⊢ ( 𝑐 = 𝑛 → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
208 |
|
opex |
⊢ 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ∈ V |
209 |
208
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ∈ V ) |
210 |
179 207 19 209
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
211 |
210
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
212 |
211
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
213 |
199 204 212
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ) |
214 |
183 184
|
opth2 |
⊢ ( 〈 ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) 〉 = 〈 ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) 〉 ↔ ( ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ∧ ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) ) |
215 |
213 214
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ∧ ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) ) |
216 |
215
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
217 |
216
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
218 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → 𝑖 = 0 ) |
219 |
218
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 0 ) ) |
220 |
218
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑛 ‘ 𝑖 ) = ( 𝑛 ‘ 0 ) ) |
221 |
217 219 220
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
222 |
215
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
223 |
222
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
224 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → 𝑖 = 1 ) |
225 |
224
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 1 ) ) |
226 |
224
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑛 ‘ 𝑖 ) = ( 𝑛 ‘ 1 ) ) |
227 |
223 225 226
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
228 |
216
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ) |
229 |
222
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) |
230 |
228 229
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) = ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) |
231 |
230
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) ) |
232 |
24
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
233 |
232
|
sumeq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑐 ‘ 𝑗 ) ) |
234 |
|
ssidd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ℕ ⊆ ℕ ) |
235 |
137
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑁 ∈ ℤ ) |
236 |
6
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 3 ∈ ℕ0 ) |
237 |
140
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
238 |
234 235 236 237
|
reprsum |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ) |
239 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 0 ) ) |
240 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 1 ) ) |
241 |
|
fveq2 |
⊢ ( 𝑗 = 2 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 2 ) ) |
242 |
143
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ℂ ) |
243 |
242
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 0 ) ∈ ℂ ) |
244 |
169
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℂ ) |
245 |
244
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 1 ) ∈ ℂ ) |
246 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 2 ∈ ( 0 ..^ 3 ) ) |
247 |
141 246
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 2 ) ∈ ℕ ) |
248 |
247
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 ‘ 2 ) ∈ ℂ ) |
249 |
248
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) ∈ ℂ ) |
250 |
243 245 249
|
3jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) ∈ ℂ ∧ ( 𝑐 ‘ 1 ) ∈ ℂ ∧ ( 𝑐 ‘ 2 ) ∈ ℂ ) ) |
251 |
22 29 35
|
3pm3.2i |
⊢ ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) |
252 |
251
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) ) |
253 |
|
0ne1 |
⊢ 0 ≠ 1 |
254 |
253
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 0 ≠ 1 ) |
255 |
|
0ne2 |
⊢ 0 ≠ 2 |
256 |
255
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 0 ≠ 2 ) |
257 |
|
1ne2 |
⊢ 1 ≠ 2 |
258 |
257
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 1 ≠ 2 ) |
259 |
239 240 241 250 252 254 256 258
|
sumtp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑐 ‘ 𝑗 ) = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) |
260 |
233 238 259
|
3eqtr3rd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) = 𝑁 ) |
261 |
243 245
|
addcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ∈ ℂ ) |
262 |
101
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑁 ∈ ℂ ) |
263 |
261 249 262
|
addrsub |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) = 𝑁 ↔ ( 𝑐 ‘ 2 ) = ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) ) ) |
264 |
260 263
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) = ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) ) |
265 |
232
|
sumeq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑛 ‘ 𝑗 ) = Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑛 ‘ 𝑗 ) ) |
266 |
20
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
267 |
266
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) |
268 |
234 235 236 267
|
reprsum |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑛 ‘ 𝑗 ) = 𝑁 ) |
269 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝑛 ‘ 𝑗 ) = ( 𝑛 ‘ 0 ) ) |
270 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝑛 ‘ 𝑗 ) = ( 𝑛 ‘ 1 ) ) |
271 |
|
fveq2 |
⊢ ( 𝑗 = 2 → ( 𝑛 ‘ 𝑗 ) = ( 𝑛 ‘ 2 ) ) |
272 |
27
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℂ ) |
273 |
272
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℂ ) |
274 |
273
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 0 ) ∈ ℂ ) |
275 |
33
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℂ ) |
276 |
275
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℂ ) |
277 |
276
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 1 ) ∈ ℂ ) |
278 |
39
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℂ ) |
279 |
278
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℂ ) |
280 |
279
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 2 ) ∈ ℂ ) |
281 |
274 277 280
|
3jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑛 ‘ 0 ) ∈ ℂ ∧ ( 𝑛 ‘ 1 ) ∈ ℂ ∧ ( 𝑛 ‘ 2 ) ∈ ℂ ) ) |
282 |
269 270 271 281 252 254 256 258
|
sumtp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑛 ‘ 𝑗 ) = ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) ) |
283 |
265 268 282
|
3eqtr3rd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) = 𝑁 ) |
284 |
274 277
|
addcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ∈ ℂ ) |
285 |
284 280 262
|
addrsub |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) = 𝑁 ↔ ( 𝑛 ‘ 2 ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) ) ) |
286 |
283 285
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 2 ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) ) |
287 |
231 264 286
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) = ( 𝑛 ‘ 2 ) ) |
288 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑖 = 2 ) |
289 |
288
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 2 ) ) |
290 |
288
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 𝑖 ) = ( 𝑛 ‘ 2 ) ) |
291 |
287 289 290
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
292 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → 𝑖 ∈ ( 0 ..^ 3 ) ) |
293 |
292 24
|
eleqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → 𝑖 ∈ { 0 , 1 , 2 } ) |
294 |
|
vex |
⊢ 𝑖 ∈ V |
295 |
294
|
eltp |
⊢ ( 𝑖 ∈ { 0 , 1 , 2 } ↔ ( 𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2 ) ) |
296 |
293 295
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → ( 𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2 ) ) |
297 |
221 227 291 296
|
mpjao3dan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → ( 𝑐 ‘ 𝑖 ) = ( 𝑛 ‘ 𝑖 ) ) |
298 |
196 198 297
|
eqfnfvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) ∧ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) → 𝑐 = 𝑛 ) |
299 |
298
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝐴 ) → ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) |
300 |
299
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) → ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) |
301 |
300
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) |
302 |
|
dff1o6 |
⊢ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ↔ ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) ) |
303 |
302
|
biimpri |
⊢ ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) = ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 ) = ( ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) |
304 |
193 194 301 303
|
syl3anc |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) |
305 |
181
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) |
306 |
305 125
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( Λ ‘ ( 1st ‘ 𝑢 ) ) ∈ ℝ ) |
307 |
305 129
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ∈ ℝ ) |
308 |
306 307
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ∈ ℝ ) |
309 |
308
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ) → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ∈ ℂ ) |
310 |
189 12 304 210 309
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑢 ∈ ran ( 𝑑 ∈ 𝐴 ↦ 〈 ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) 〉 ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) |
311 |
76
|
recnd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ∈ ℂ ) |
312 |
70
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( Λ ‘ 𝑖 ) ∈ ℂ ) |
313 |
55 311 312
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) |
314 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
315 |
75
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ ) |
316 |
315
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ ) |
317 |
316
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℂ ) |
318 |
314 312 317
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ) |
319 |
318
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ) |
320 |
|
vex |
⊢ 𝑗 ∈ V |
321 |
294 320
|
op1std |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( 1st ‘ 𝑢 ) = 𝑖 ) |
322 |
321
|
fveq2d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( Λ ‘ ( 1st ‘ 𝑢 ) ) = ( Λ ‘ 𝑖 ) ) |
323 |
294 320
|
op2ndd |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( 2nd ‘ 𝑢 ) = 𝑗 ) |
324 |
323
|
fveq2d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( Λ ‘ ( 2nd ‘ 𝑢 ) ) = ( Λ ‘ 𝑗 ) ) |
325 |
322 324
|
oveq12d |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ) |
326 |
70
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ ) |
327 |
326 315
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ∈ ℝ ) |
328 |
327
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ∈ ℂ ) |
329 |
325 55 72 328
|
fsumxp |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) = Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) ) |
330 |
313 319 329
|
3eqtrrd |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st ‘ 𝑢 ) ) · ( Λ ‘ ( 2nd ‘ 𝑢 ) ) ) = ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) |
331 |
182 310 330
|
3brtr3d |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ≤ ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) |
332 |
47 77 45 117 331
|
lemul2ad |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ) |
333 |
43 48 78 114 332
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ) |