Step |
Hyp |
Ref |
Expression |
1 |
|
hgt750lemf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
hgt750lemf.p |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
3 |
|
hgt750lemf.q |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
4 |
|
hgt750lemf.h |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( 0 [,) +∞ ) ) |
5 |
|
hgt750lemf.k |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ ( 0 [,) +∞ ) ) |
6 |
|
hgt750lemf.0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℕ ) |
7 |
|
hgt750lemf.1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℕ ) |
8 |
|
hgt750lemf.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℕ ) |
9 |
|
hgt750lemf.3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐾 ‘ 𝑚 ) ≤ 𝑃 ) |
10 |
|
hgt750lemf.4 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ≤ 𝑄 ) |
11 |
|
vmaf |
⊢ Λ : ℕ ⟶ ℝ |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → Λ : ℕ ⟶ ℝ ) |
13 |
12 6
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ ) |
14 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝐻 : ℕ ⟶ ( 0 [,) +∞ ) ) |
16 |
15 6
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ( 0 [,) +∞ ) ) |
17 |
14 16
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ ) |
18 |
13 17
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) ∈ ℝ ) |
19 |
12 7
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝐾 : ℕ ⟶ ( 0 [,) +∞ ) ) |
21 |
20 7
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ( 0 [,) +∞ ) ) |
22 |
14 21
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ ) |
23 |
19 22
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ ) |
24 |
12 8
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
25 |
20 8
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ( 0 [,) +∞ ) ) |
26 |
14 25
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ ) |
27 |
24 26
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ ) |
28 |
23 27
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
29 |
18 28
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ ) |
30 |
2
|
resqcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℝ ) |
31 |
30 3
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) ∈ ℝ ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑃 ↑ 2 ) · 𝑄 ) ∈ ℝ ) |
33 |
19 24
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ ) |
34 |
13 33
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
35 |
32 34
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ ) |
36 |
13
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℂ ) |
37 |
33
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℂ ) |
38 |
17
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ℂ ) |
39 |
22 26
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ ) |
40 |
39
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℂ ) |
41 |
36 37 38 40
|
mul4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
42 |
36 37
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℂ ) |
43 |
38 40
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℂ ) |
44 |
42 43
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
45 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℂ ) |
46 |
24
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℂ ) |
47 |
22
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ℂ ) |
48 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ℂ ) |
49 |
45 46 47 48
|
mul4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
51 |
41 44 50
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
52 |
17 39
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ ) |
53 |
|
vmage0 |
⊢ ( ( 𝑛 ‘ 0 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
54 |
6 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) |
55 |
|
vmage0 |
⊢ ( ( 𝑛 ‘ 1 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
56 |
7 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) |
57 |
|
vmage0 |
⊢ ( ( 𝑛 ‘ 2 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) |
58 |
8 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) |
59 |
19 24 56 58
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) |
60 |
13 33 54 59
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) |
61 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑄 ∈ ℝ ) |
62 |
2 2
|
remulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝑃 ) ∈ ℝ ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝑃 · 𝑃 ) ∈ ℝ ) |
64 |
|
0xr |
⊢ 0 ∈ ℝ* |
65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ∈ ℝ* ) |
66 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
68 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) |
69 |
65 67 16 68
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) |
70 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) |
71 |
65 67 21 70
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) |
72 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) |
73 |
65 67 25 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) |
74 |
22 26 71 73
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 0 ≤ ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) |
75 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 ‘ 0 ) → ( 𝐻 ‘ 𝑚 ) = ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) |
76 |
75
|
breq1d |
⊢ ( 𝑚 = ( 𝑛 ‘ 0 ) → ( ( 𝐻 ‘ 𝑚 ) ≤ 𝑄 ↔ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ≤ 𝑄 ) ) |
77 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝐻 ‘ 𝑚 ) ≤ 𝑄 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ∀ 𝑚 ∈ ℕ ( 𝐻 ‘ 𝑚 ) ≤ 𝑄 ) |
79 |
76 78 6
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ≤ 𝑄 ) |
80 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → 𝑃 ∈ ℝ ) |
81 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 ‘ 1 ) → ( 𝐾 ‘ 𝑚 ) = ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) |
82 |
81
|
breq1d |
⊢ ( 𝑚 = ( 𝑛 ‘ 1 ) → ( ( 𝐾 ‘ 𝑚 ) ≤ 𝑃 ↔ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ≤ 𝑃 ) ) |
83 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝐾 ‘ 𝑚 ) ≤ 𝑃 ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ∀ 𝑚 ∈ ℕ ( 𝐾 ‘ 𝑚 ) ≤ 𝑃 ) |
85 |
82 84 7
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ≤ 𝑃 ) |
86 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 ‘ 2 ) → ( 𝐾 ‘ 𝑚 ) = ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) |
87 |
86
|
breq1d |
⊢ ( 𝑚 = ( 𝑛 ‘ 2 ) → ( ( 𝐾 ‘ 𝑚 ) ≤ 𝑃 ↔ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ≤ 𝑃 ) ) |
88 |
87 84 8
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ≤ 𝑃 ) |
89 |
22 80 26 80 71 73 85 88
|
lemul12ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ≤ ( 𝑃 · 𝑃 ) ) |
90 |
17 61 39 63 69 74 79 89
|
lemul12ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( 𝑄 · ( 𝑃 · 𝑃 ) ) ) |
91 |
30
|
recnd |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℂ ) |
92 |
3
|
recnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
93 |
91 92
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) = ( 𝑄 · ( 𝑃 ↑ 2 ) ) ) |
94 |
2
|
recnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
95 |
94
|
sqvald |
⊢ ( 𝜑 → ( 𝑃 ↑ 2 ) = ( 𝑃 · 𝑃 ) ) |
96 |
95
|
oveq2d |
⊢ ( 𝜑 → ( 𝑄 · ( 𝑃 ↑ 2 ) ) = ( 𝑄 · ( 𝑃 · 𝑃 ) ) ) |
97 |
93 96
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) = ( 𝑄 · ( 𝑃 · 𝑃 ) ) ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑃 ↑ 2 ) · 𝑄 ) = ( 𝑄 · ( 𝑃 · 𝑃 ) ) ) |
99 |
90 98
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( 𝑃 ↑ 2 ) · 𝑄 ) ) |
100 |
52 32 34 60 99
|
lemul1ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
101 |
51 100
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
102 |
1 29 35 101
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ Σ 𝑛 ∈ 𝐴 ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
103 |
31
|
recnd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) ∈ ℂ ) |
104 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℂ ) |
105 |
1 103 104
|
fsummulc2 |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = Σ 𝑛 ∈ 𝐴 ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |
106 |
102 105
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝐴 ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · Σ 𝑛 ∈ 𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |