Metamath Proof Explorer


Theorem hh0oi

Description: The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hh0o.2 𝑍 = ( 𝑈 0op 𝑈 )
Assertion hh0oi 0hop = 𝑍

Proof

Step Hyp Ref Expression
1 hhnmo.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hh0o.2 𝑍 = ( 𝑈 0op 𝑈 )
3 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
4 df-ch0 0 = { 0 }
5 1 hh0v 0 = ( 0vec𝑈 )
6 5 sneqi { 0 } = { ( 0vec𝑈 ) }
7 4 6 eqtri 0 = { ( 0vec𝑈 ) }
8 3 7 xpeq12i ( ℋ × 0 ) = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec𝑈 ) } )
9 df0op2 0hop = ( ℋ × 0 )
10 1 hhnv 𝑈 ∈ NrmCVec
11 eqid ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 )
12 eqid ( 0vec𝑈 ) = ( 0vec𝑈 )
13 11 12 2 0ofval ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑍 = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec𝑈 ) } ) )
14 10 10 13 mp2an 𝑍 = ( ( BaseSet ‘ 𝑈 ) × { ( 0vec𝑈 ) } )
15 8 9 14 3eqtr4i 0hop = 𝑍