| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhnmo.1 | ⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 2 |  | hh0o.2 | ⊢ 𝑍  =  ( 𝑈  0op  𝑈 ) | 
						
							| 3 | 1 | hhba | ⊢  ℋ  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 4 |  | df-ch0 | ⊢ 0ℋ  =  { 0ℎ } | 
						
							| 5 | 1 | hh0v | ⊢ 0ℎ  =  ( 0vec ‘ 𝑈 ) | 
						
							| 6 | 5 | sneqi | ⊢ { 0ℎ }  =  { ( 0vec ‘ 𝑈 ) } | 
						
							| 7 | 4 6 | eqtri | ⊢ 0ℋ  =  { ( 0vec ‘ 𝑈 ) } | 
						
							| 8 | 3 7 | xpeq12i | ⊢ (  ℋ  ×  0ℋ )  =  ( ( BaseSet ‘ 𝑈 )  ×  { ( 0vec ‘ 𝑈 ) } ) | 
						
							| 9 |  | df0op2 | ⊢  0hop   =  (  ℋ  ×  0ℋ ) | 
						
							| 10 | 1 | hhnv | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 11 |  | eqid | ⊢ ( BaseSet ‘ 𝑈 )  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 12 |  | eqid | ⊢ ( 0vec ‘ 𝑈 )  =  ( 0vec ‘ 𝑈 ) | 
						
							| 13 | 11 12 2 | 0ofval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑈  ∈  NrmCVec )  →  𝑍  =  ( ( BaseSet ‘ 𝑈 )  ×  { ( 0vec ‘ 𝑈 ) } ) ) | 
						
							| 14 | 10 10 13 | mp2an | ⊢ 𝑍  =  ( ( BaseSet ‘ 𝑈 )  ×  { ( 0vec ‘ 𝑈 ) } ) | 
						
							| 15 | 8 9 14 | 3eqtr4i | ⊢  0hop   =  𝑍 |