Metamath Proof Explorer


Theorem hh0v

Description: The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
Assertion hh0v 0 = ( 0vec𝑈 )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 1 hhnv 𝑈 ∈ NrmCVec
3 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
4 eqid ( 0vec𝑈 ) = ( 0vec𝑈 )
5 3 4 0vfval ( 𝑈 ∈ NrmCVec → ( 0vec𝑈 ) = ( GId ‘ ( +𝑣𝑈 ) ) )
6 2 5 ax-mp ( 0vec𝑈 ) = ( GId ‘ ( +𝑣𝑈 ) )
7 1 hhva + = ( +𝑣𝑈 )
8 7 fveq2i ( GId ‘ + ) = ( GId ‘ ( +𝑣𝑈 ) )
9 hilid ( GId ‘ + ) = 0
10 6 8 9 3eqtr2ri 0 = ( 0vec𝑈 )