Description: The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| Assertion | hh0v | ⊢ 0ℎ = ( 0vec ‘ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 3 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 5 | 3 4 | 0vfval | ⊢ ( 𝑈 ∈ NrmCVec → ( 0vec ‘ 𝑈 ) = ( GId ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
| 6 | 2 5 | ax-mp | ⊢ ( 0vec ‘ 𝑈 ) = ( GId ‘ ( +𝑣 ‘ 𝑈 ) ) |
| 7 | 1 | hhva | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
| 8 | 7 | fveq2i | ⊢ ( GId ‘ +ℎ ) = ( GId ‘ ( +𝑣 ‘ 𝑈 ) ) |
| 9 | hilid | ⊢ ( GId ‘ +ℎ ) = 0ℎ | |
| 10 | 6 8 9 | 3eqtr2ri | ⊢ 0ℎ = ( 0vec ‘ 𝑈 ) |