Metamath Proof Explorer


Theorem hhba

Description: The base set of Hilbert space. This theorem provides an independent proof of df-hba (see comments in that definition). (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
Assertion hhba ℋ = ( BaseSet ‘ 𝑈 )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hilablo + ∈ AbelOp
3 ablogrpo ( + ∈ AbelOp → + ∈ GrpOp )
4 2 3 ax-mp + ∈ GrpOp
5 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
6 5 fdmi dom + = ( ℋ × ℋ )
7 4 6 grporn ℋ = ran +
8 eqid ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 )
9 1 hhva + = ( +𝑣𝑈 )
10 8 9 bafval ( BaseSet ‘ 𝑈 ) = ran +
11 7 10 eqtr4i ℋ = ( BaseSet ‘ 𝑈 )