Step |
Hyp |
Ref |
Expression |
1 |
|
hhnmo.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
hhblo.2 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) |
3 |
|
df-bdop |
⊢ BndLinOp = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } |
4 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
5 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑈 ) = ( 𝑈 normOpOLD 𝑈 ) |
6 |
1 5
|
hhnmoi |
⊢ normop = ( 𝑈 normOpOLD 𝑈 ) |
7 |
|
eqid |
⊢ ( 𝑈 LnOp 𝑈 ) = ( 𝑈 LnOp 𝑈 ) |
8 |
1 7
|
hhlnoi |
⊢ LinOp = ( 𝑈 LnOp 𝑈 ) |
9 |
6 8 2
|
bloval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } ) |
10 |
4 4 9
|
mp2an |
⊢ 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop ‘ 𝑥 ) < +∞ } |
11 |
3 10
|
eqtr4i |
⊢ BndLinOp = 𝐵 |