| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhnmo.1 | ⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 2 |  | hhblo.2 | ⊢ 𝐵  =  ( 𝑈  BLnOp  𝑈 ) | 
						
							| 3 |  | df-bdop | ⊢ BndLinOp  =  { 𝑥  ∈  LinOp  ∣  ( normop ‘ 𝑥 )  <  +∞ } | 
						
							| 4 | 1 | hhnv | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 5 |  | eqid | ⊢ ( 𝑈  normOpOLD  𝑈 )  =  ( 𝑈  normOpOLD  𝑈 ) | 
						
							| 6 | 1 5 | hhnmoi | ⊢ normop  =  ( 𝑈  normOpOLD  𝑈 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑈  LnOp  𝑈 )  =  ( 𝑈  LnOp  𝑈 ) | 
						
							| 8 | 1 7 | hhlnoi | ⊢ LinOp  =  ( 𝑈  LnOp  𝑈 ) | 
						
							| 9 | 6 8 2 | bloval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑈  ∈  NrmCVec )  →  𝐵  =  { 𝑥  ∈  LinOp  ∣  ( normop ‘ 𝑥 )  <  +∞ } ) | 
						
							| 10 | 4 4 9 | mp2an | ⊢ 𝐵  =  { 𝑥  ∈  LinOp  ∣  ( normop ‘ 𝑥 )  <  +∞ } | 
						
							| 11 | 3 10 | eqtr4i | ⊢ BndLinOp  =  𝐵 |