Metamath Proof Explorer


Theorem hhbloi

Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhnmo.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhblo.2 𝐵 = ( 𝑈 BLnOp 𝑈 )
Assertion hhbloi BndLinOp = 𝐵

Proof

Step Hyp Ref Expression
1 hhnmo.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhblo.2 𝐵 = ( 𝑈 BLnOp 𝑈 )
3 df-bdop BndLinOp = { 𝑥 ∈ LinOp ∣ ( normop𝑥 ) < +∞ }
4 1 hhnv 𝑈 ∈ NrmCVec
5 eqid ( 𝑈 normOpOLD 𝑈 ) = ( 𝑈 normOpOLD 𝑈 )
6 1 5 hhnmoi normop = ( 𝑈 normOpOLD 𝑈 )
7 eqid ( 𝑈 LnOp 𝑈 ) = ( 𝑈 LnOp 𝑈 )
8 1 7 hhlnoi LinOp = ( 𝑈 LnOp 𝑈 )
9 6 8 2 bloval ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop𝑥 ) < +∞ } )
10 4 4 9 mp2an 𝐵 = { 𝑥 ∈ LinOp ∣ ( normop𝑥 ) < +∞ }
11 3 10 eqtr4i BndLinOp = 𝐵