Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhlm.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhlm.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | hhcau | ⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hhlm.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhlm.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec | 
| 4 | 1 | hhba | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | 
| 5 | 1 3 4 2 | h2hcau | ⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |