Metamath Proof Explorer


Theorem hhcau

Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhlm.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhlm.2 𝐷 = ( IndMet ‘ 𝑈 )
Assertion hhcau Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) )

Proof

Step Hyp Ref Expression
1 hhlm.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhlm.2 𝐷 = ( IndMet ‘ 𝑈 )
3 1 hhnv 𝑈 ∈ NrmCVec
4 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
5 1 3 4 2 h2hcau Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) )