| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhlm.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 2 |
|
hhlm.2 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 3 |
|
hhlm.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 4 |
|
hhcmpl.c |
⊢ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
| 5 |
4
|
anim1ci |
⊢ ( ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ∧ 𝐹 ∈ ( ℋ ↑m ℕ ) ) → ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 6 |
|
elin |
⊢ ( 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ∧ 𝐹 ∈ ( ℋ ↑m ℕ ) ) ) |
| 7 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 8 |
5 6 7
|
3imtr4i |
⊢ ( 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) → ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 9 |
1 2
|
hhcau |
⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |
| 10 |
9
|
eleq2i |
⊢ ( 𝐹 ∈ Cauchy ↔ 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ) |
| 11 |
1 2 3
|
hhlm |
⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) |
| 12 |
11
|
breqi |
⊢ ( 𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ) |
| 13 |
|
vex |
⊢ 𝑥 ∈ V |
| 14 |
13
|
brresi |
⊢ ( 𝐹 ( ( ⇝𝑡 ‘ 𝐽 ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 15 |
12 14
|
bitri |
⊢ ( 𝐹 ⇝𝑣 𝑥 ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 16 |
15
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 17 |
8 10 16
|
3imtr4i |
⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |