| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hhcms.1 | 
							⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  | 
						
						
							| 2 | 
							
								
							 | 
							hhcms.2 | 
							⊢ 𝐷  =  ( IndMet ‘ 𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							hhmet | 
							⊢ 𝐷  ∈  ( Met ‘  ℋ )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							hhcau | 
							⊢ Cauchy  =  ( ( Cau ‘ 𝐷 )  ∩  (  ℋ  ↑m  ℕ ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eleq2i | 
							⊢ ( 𝑓  ∈  Cauchy  ↔  𝑓  ∈  ( ( Cau ‘ 𝐷 )  ∩  (  ℋ  ↑m  ℕ ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑓  ∈  ( ( Cau ‘ 𝐷 )  ∩  (  ℋ  ↑m  ℕ ) )  ↔  ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓  ∈  (  ℋ  ↑m  ℕ ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ax-hilex | 
							⊢  ℋ  ∈  V  | 
						
						
							| 9 | 
							
								
							 | 
							nnex | 
							⊢ ℕ  ∈  V  | 
						
						
							| 10 | 
							
								8 9
							 | 
							elmap | 
							⊢ ( 𝑓  ∈  (  ℋ  ↑m  ℕ )  ↔  𝑓 : ℕ ⟶  ℋ )  | 
						
						
							| 11 | 
							
								10
							 | 
							anbi2i | 
							⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓  ∈  (  ℋ  ↑m  ℕ ) )  ↔  ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶  ℋ ) )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							bitri | 
							⊢ ( 𝑓  ∈  ( ( Cau ‘ 𝐷 )  ∩  (  ℋ  ↑m  ℕ ) )  ↔  ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶  ℋ ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							bitri | 
							⊢ ( 𝑓  ∈  Cauchy  ↔  ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶  ℋ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ax-hcompl | 
							⊢ ( 𝑓  ∈  Cauchy  →  ∃ 𝑥  ∈   ℋ 𝑓  ⇝𝑣  𝑥 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylbir | 
							⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶  ℋ )  →  ∃ 𝑥  ∈   ℋ 𝑓  ⇝𝑣  𝑥 )  | 
						
						
							| 16 | 
							
								1 2 3
							 | 
							hhlm | 
							⊢  ⇝𝑣   =  ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) )  ↾  (  ℋ  ↑m  ℕ ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							breqi | 
							⊢ ( 𝑓  ⇝𝑣  𝑥  ↔  𝑓 ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) )  ↾  (  ℋ  ↑m  ℕ ) ) 𝑥 )  | 
						
						
							| 18 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 19 | 
							
								18
							 | 
							brresi | 
							⊢ ( 𝑓 ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) )  ↾  (  ℋ  ↑m  ℕ ) ) 𝑥  ↔  ( 𝑓  ∈  (  ℋ  ↑m  ℕ )  ∧  𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							bitri | 
							⊢ ( 𝑓  ⇝𝑣  𝑥  ↔  ( 𝑓  ∈  (  ℋ  ↑m  ℕ )  ∧  𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							vex | 
							⊢ 𝑓  ∈  V  | 
						
						
							| 22 | 
							
								21 18
							 | 
							breldm | 
							⊢ ( 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥  →  𝑓  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							simplbiim | 
							⊢ ( 𝑓  ⇝𝑣  𝑥  →  𝑓  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							rexlimivw | 
							⊢ ( ∃ 𝑥  ∈   ℋ 𝑓  ⇝𝑣  𝑥  →  𝑓  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  | 
						
						
							| 25 | 
							
								15 24
							 | 
							syl | 
							⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶  ℋ )  →  𝑓  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) )  | 
						
						
							| 26 | 
							
								3 4 25
							 | 
							iscmet3i | 
							⊢ 𝐷  ∈  ( CMet ‘  ℋ )  |