| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhcn.1 | ⊢ 𝐷  =  ( normℎ  ∘   −ℎ  ) | 
						
							| 2 |  | hhcn.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 3 |  | df-rab | ⊢ { 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∣  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) }  =  { 𝑡  ∣  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) } | 
						
							| 4 |  | df-cnop | ⊢ ContOp  =  { 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∣  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) } | 
						
							| 5 | 1 | hilmetdval | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( 𝑥 𝐷 𝑤 )  =  ( normℎ ‘ ( 𝑥  −ℎ  𝑤 ) ) ) | 
						
							| 6 |  | normsub | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( normℎ ‘ ( 𝑥  −ℎ  𝑤 ) )  =  ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) ) ) | 
						
							| 7 | 5 6 | eqtrd | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑤  ∈   ℋ )  →  ( 𝑥 𝐷 𝑤 )  =  ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) ) ) | 
						
							| 8 | 7 | adantll | ⊢ ( ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( 𝑥 𝐷 𝑤 )  =  ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) ) ) | 
						
							| 9 | 8 | breq1d | ⊢ ( ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑥 𝐷 𝑤 )  <  𝑧  ↔  ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧 ) ) | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑡 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 11 |  | ffvelcdm | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑤  ∈   ℋ )  →  ( 𝑡 ‘ 𝑤 )  ∈   ℋ ) | 
						
							| 12 | 10 11 | anim12dan | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑤  ∈   ℋ ) )  →  ( ( 𝑡 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑡 ‘ 𝑤 )  ∈   ℋ ) ) | 
						
							| 13 | 1 | hilmetdval | ⊢ ( ( ( 𝑡 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑡 ‘ 𝑤 )  ∈   ℋ )  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  =  ( normℎ ‘ ( ( 𝑡 ‘ 𝑥 )  −ℎ  ( 𝑡 ‘ 𝑤 ) ) ) ) | 
						
							| 14 |  | normsub | ⊢ ( ( ( 𝑡 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑡 ‘ 𝑤 )  ∈   ℋ )  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑥 )  −ℎ  ( 𝑡 ‘ 𝑤 ) ) )  =  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) ) ) | 
						
							| 15 | 13 14 | eqtrd | ⊢ ( ( ( 𝑡 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑡 ‘ 𝑤 )  ∈   ℋ )  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  =  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 12 15 | syl | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑤  ∈   ℋ ) )  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  =  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) ) ) | 
						
							| 17 | 16 | anassrs | ⊢ ( ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  =  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) ) ) | 
						
							| 18 | 17 | breq1d | ⊢ ( ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦  ↔  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) | 
						
							| 19 | 9 18 | imbi12d | ⊢ ( ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  𝑤  ∈   ℋ )  →  ( ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 )  ↔  ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 20 | 19 | ralbidva | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ∀ 𝑤  ∈   ℋ ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 )  ↔  ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 21 | 20 | rexbidv | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 )  ↔  ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 22 | 21 | ralbidv | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 )  ↔  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 23 | 22 | ralbidva | ⊢ ( 𝑡 :  ℋ ⟶  ℋ  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 24 | 23 | pm5.32i | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 ) )  ↔  ( 𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 25 | 1 | hilxmet | ⊢ 𝐷  ∈  ( ∞Met ‘  ℋ ) | 
						
							| 26 | 2 2 | metcn | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘  ℋ )  ∧  𝐷  ∈  ( ∞Met ‘  ℋ ) )  →  ( 𝑡  ∈  ( 𝐽  Cn  𝐽 )  ↔  ( 𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 ) ) ) ) | 
						
							| 27 | 25 25 26 | mp2an | ⊢ ( 𝑡  ∈  ( 𝐽  Cn  𝐽 )  ↔  ( 𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( 𝑥 𝐷 𝑤 )  <  𝑧  →  ( ( 𝑡 ‘ 𝑥 ) 𝐷 ( 𝑡 ‘ 𝑤 ) )  <  𝑦 ) ) ) | 
						
							| 28 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 29 | 28 28 | elmap | ⊢ ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↔  𝑡 :  ℋ ⟶  ℋ ) | 
						
							| 30 | 29 | anbi1i | ⊢ ( ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) )  ↔  ( 𝑡 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 31 | 24 27 30 | 3bitr4i | ⊢ ( 𝑡  ∈  ( 𝐽  Cn  𝐽 )  ↔  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 32 | 31 | eqabi | ⊢ ( 𝐽  Cn  𝐽 )  =  { 𝑡  ∣  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 )  −ℎ  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) ) } | 
						
							| 33 | 3 4 32 | 3eqtr4i | ⊢ ContOp  =  ( 𝐽  Cn  𝐽 ) |