Metamath Proof Explorer


Theorem hhhl

Description: The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhhl.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
Assertion hhhl 𝑈 ∈ CHilOLD

Proof

Step Hyp Ref Expression
1 hhhl.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 1 hhnv 𝑈 ∈ NrmCVec
3 eqid ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 )
4 1 3 hhcms ( IndMet ‘ 𝑈 ) ∈ ( CMet ‘ ℋ )
5 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
6 5 3 iscbn ( 𝑈 ∈ CBan ↔ ( 𝑈 ∈ NrmCVec ∧ ( IndMet ‘ 𝑈 ) ∈ ( CMet ‘ ℋ ) ) )
7 2 4 6 mpbir2an 𝑈 ∈ CBan
8 1 hhph 𝑈 ∈ CPreHilOLD
9 ishlo ( 𝑈 ∈ CHilOLD ↔ ( 𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD ) )
10 7 8 9 mpbir2an 𝑈 ∈ CHilOLD