Description: The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hhhl.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
Assertion | hhhl | ⊢ 𝑈 ∈ CHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhhl.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
2 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
3 | eqid | ⊢ ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 ) | |
4 | 1 3 | hhcms | ⊢ ( IndMet ‘ 𝑈 ) ∈ ( CMet ‘ ℋ ) |
5 | 1 | hhba | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
6 | 5 3 | iscbn | ⊢ ( 𝑈 ∈ CBan ↔ ( 𝑈 ∈ NrmCVec ∧ ( IndMet ‘ 𝑈 ) ∈ ( CMet ‘ ℋ ) ) ) |
7 | 2 4 6 | mpbir2an | ⊢ 𝑈 ∈ CBan |
8 | 1 | hhph | ⊢ 𝑈 ∈ CPreHilOLD |
9 | ishlo | ⊢ ( 𝑈 ∈ CHilOLD ↔ ( 𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD ) ) | |
10 | 7 8 9 | mpbir2an | ⊢ 𝑈 ∈ CHilOLD |