Description: The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhims.2 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | ||
| Assertion | hhims | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhims.2 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| 3 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec | 
| 4 | 1 | hhvs | ⊢ −ℎ = ( −𝑣 ‘ 𝑈 ) | 
| 5 | 1 | hhnm | ⊢ normℎ = ( normCV ‘ 𝑈 ) | 
| 6 | eqid | ⊢ ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 ) | |
| 7 | 4 5 6 | imsval | ⊢ ( 𝑈 ∈ NrmCVec → ( IndMet ‘ 𝑈 ) = ( normℎ ∘ −ℎ ) ) | 
| 8 | 3 7 | ax-mp | ⊢ ( IndMet ‘ 𝑈 ) = ( normℎ ∘ −ℎ ) | 
| 9 | 2 8 | eqtr4i | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |