Metamath Proof Explorer


Theorem hhims

Description: The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhims.2 𝐷 = ( norm ∘ − )
Assertion hhims 𝐷 = ( IndMet ‘ 𝑈 )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhims.2 𝐷 = ( norm ∘ − )
3 1 hhnv 𝑈 ∈ NrmCVec
4 1 hhvs = ( −𝑣𝑈 )
5 1 hhnm norm = ( normCV𝑈 )
6 eqid ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 )
7 4 5 6 imsval ( 𝑈 ∈ NrmCVec → ( IndMet ‘ 𝑈 ) = ( norm ∘ − ) )
8 3 7 ax-mp ( IndMet ‘ 𝑈 ) = ( norm ∘ − )
9 2 8 eqtr4i 𝐷 = ( IndMet ‘ 𝑈 )