Metamath Proof Explorer


Theorem hhims2

Description: Hilbert space distance metric. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhims2.2 𝐷 = ( IndMet ‘ 𝑈 )
Assertion hhims2 𝐷 = ( norm ∘ − )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhims2.2 𝐷 = ( IndMet ‘ 𝑈 )
3 eqid ( norm ∘ − ) = ( norm ∘ − )
4 1 3 hhims ( norm ∘ − ) = ( IndMet ‘ 𝑈 )
5 2 4 eqtr4i 𝐷 = ( norm ∘ − )