Description: Hilbert space distance metric. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhims2.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | hhims2 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhims2.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( normℎ ∘ −ℎ ) = ( normℎ ∘ −ℎ ) | |
| 4 | 1 3 | hhims | ⊢ ( normℎ ∘ −ℎ ) = ( IndMet ‘ 𝑈 ) | 
| 5 | 2 4 | eqtr4i | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) |