Step |
Hyp |
Ref |
Expression |
1 |
|
hhnv.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
polid |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih 𝑦 ) = ( ( ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝑥 +ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
3 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
4 |
1
|
hhba |
⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
5 |
1
|
hhva |
⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
6 |
1
|
hhsm |
⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
7 |
1
|
hhnm |
⊢ normℎ = ( normCV ‘ 𝑈 ) |
8 |
|
eqid |
⊢ ( ·𝑖OLD ‘ 𝑈 ) = ( ·𝑖OLD ‘ 𝑈 ) |
9 |
1
|
hhvs |
⊢ −ℎ = ( −𝑣 ‘ 𝑈 ) |
10 |
4 5 6 7 8 9
|
ipval3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) = ( ( ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝑥 +ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
11 |
3 10
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) = ( ( ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝑥 +ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
12 |
2 11
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) |
13 |
12
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) |
14 |
|
ax-hfi |
⊢ ·ih : ( ℋ × ℋ ) ⟶ ℂ |
15 |
4 8
|
ipf |
⊢ ( 𝑈 ∈ NrmCVec → ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ ) |
16 |
3 15
|
ax-mp |
⊢ ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ |
17 |
|
ffn |
⊢ ( ·ih : ( ℋ × ℋ ) ⟶ ℂ → ·ih Fn ( ℋ × ℋ ) ) |
18 |
|
ffn |
⊢ ( ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ → ( ·𝑖OLD ‘ 𝑈 ) Fn ( ℋ × ℋ ) ) |
19 |
|
eqfnov2 |
⊢ ( ( ·ih Fn ( ℋ × ℋ ) ∧ ( ·𝑖OLD ‘ 𝑈 ) Fn ( ℋ × ℋ ) ) → ( ·ih = ( ·𝑖OLD ‘ 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ·ih : ( ℋ × ℋ ) ⟶ ℂ ∧ ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ ) → ( ·ih = ( ·𝑖OLD ‘ 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) ) |
21 |
14 16 20
|
mp2an |
⊢ ( ·ih = ( ·𝑖OLD ‘ 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) |
22 |
13 21
|
mpbir |
⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) |