| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhnv.1 | ⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 2 |  | polid | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  ·ih  𝑦 )  =  ( ( ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  −  ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 ) )  +  ( i  ·  ( ( ( normℎ ‘ ( 𝑥  +ℎ  ( i  ·ℎ  𝑦 ) ) ) ↑ 2 )  −  ( ( normℎ ‘ ( 𝑥  −ℎ  ( i  ·ℎ  𝑦 ) ) ) ↑ 2 ) ) ) )  /  4 ) ) | 
						
							| 3 | 1 | hhnv | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 4 | 1 | hhba | ⊢  ℋ  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 5 | 1 | hhva | ⊢  +ℎ   =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 6 | 1 | hhsm | ⊢  ·ℎ   =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 7 | 1 | hhnm | ⊢ normℎ  =  ( normCV ‘ 𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ( ·𝑖OLD ‘ 𝑈 )  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 9 | 1 | hhvs | ⊢  −ℎ   =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 10 | 4 5 6 7 8 9 | ipval3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 )  =  ( ( ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  −  ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 ) )  +  ( i  ·  ( ( ( normℎ ‘ ( 𝑥  +ℎ  ( i  ·ℎ  𝑦 ) ) ) ↑ 2 )  −  ( ( normℎ ‘ ( 𝑥  −ℎ  ( i  ·ℎ  𝑦 ) ) ) ↑ 2 ) ) ) )  /  4 ) ) | 
						
							| 11 | 3 10 | mp3an1 | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 )  =  ( ( ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  −  ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 ) )  +  ( i  ·  ( ( ( normℎ ‘ ( 𝑥  +ℎ  ( i  ·ℎ  𝑦 ) ) ) ↑ 2 )  −  ( ( normℎ ‘ ( 𝑥  −ℎ  ( i  ·ℎ  𝑦 ) ) ) ↑ 2 ) ) ) )  /  4 ) ) | 
						
							| 12 | 2 11 | eqtr4d | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  ·ih  𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) | 
						
							| 13 | 12 | rgen2 | ⊢ ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) | 
						
							| 14 |  | ax-hfi | ⊢  ·ih  : (  ℋ  ×   ℋ ) ⟶ ℂ | 
						
							| 15 | 4 8 | ipf | ⊢ ( 𝑈  ∈  NrmCVec  →  ( ·𝑖OLD ‘ 𝑈 ) : (  ℋ  ×   ℋ ) ⟶ ℂ ) | 
						
							| 16 | 3 15 | ax-mp | ⊢ ( ·𝑖OLD ‘ 𝑈 ) : (  ℋ  ×   ℋ ) ⟶ ℂ | 
						
							| 17 |  | ffn | ⊢ (  ·ih  : (  ℋ  ×   ℋ ) ⟶ ℂ  →   ·ih   Fn  (  ℋ  ×   ℋ ) ) | 
						
							| 18 |  | ffn | ⊢ ( ( ·𝑖OLD ‘ 𝑈 ) : (  ℋ  ×   ℋ ) ⟶ ℂ  →  ( ·𝑖OLD ‘ 𝑈 )  Fn  (  ℋ  ×   ℋ ) ) | 
						
							| 19 |  | eqfnov2 | ⊢ ( (  ·ih   Fn  (  ℋ  ×   ℋ )  ∧  ( ·𝑖OLD ‘ 𝑈 )  Fn  (  ℋ  ×   ℋ ) )  →  (  ·ih   =  ( ·𝑖OLD ‘ 𝑈 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( (  ·ih  : (  ℋ  ×   ℋ ) ⟶ ℂ  ∧  ( ·𝑖OLD ‘ 𝑈 ) : (  ℋ  ×   ℋ ) ⟶ ℂ )  →  (  ·ih   =  ( ·𝑖OLD ‘ 𝑈 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) ) | 
						
							| 21 | 14 16 20 | mp2an | ⊢ (  ·ih   =  ( ·𝑖OLD ‘ 𝑈 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) | 
						
							| 22 | 13 21 | mpbir | ⊢  ·ih   =  ( ·𝑖OLD ‘ 𝑈 ) |