Metamath Proof Explorer


Theorem hhlm

Description: The limit sequences of Hilbert space. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhlm.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhlm.2 𝐷 = ( IndMet ‘ 𝑈 )
hhlm.3 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion hhlm 𝑣 = ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) )

Proof

Step Hyp Ref Expression
1 hhlm.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhlm.2 𝐷 = ( IndMet ‘ 𝑈 )
3 hhlm.3 𝐽 = ( MetOpen ‘ 𝐷 )
4 1 hhnv 𝑈 ∈ NrmCVec
5 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
6 1 4 5 2 3 h2hlm 𝑣 = ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) )