Step |
Hyp |
Ref |
Expression |
1 |
|
hhlno.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
hhlno.2 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑈 ) |
3 |
|
df-lnop |
⊢ LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |
4 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
5 |
1
|
hhba |
⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
6 |
1
|
hhva |
⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
7 |
1
|
hhsm |
⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
8 |
5 5 6 6 7 7 2
|
lnoval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝐿 = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } ) |
9 |
4 4 8
|
mp2an |
⊢ 𝐿 = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |
10 |
3 9
|
eqtr4i |
⊢ LinOp = 𝐿 |