| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhlno.1 | ⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 2 |  | hhlno.2 | ⊢ 𝐿  =  ( 𝑈  LnOp  𝑈 ) | 
						
							| 3 |  | df-lnop | ⊢ LinOp  =  { 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∣  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑡 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑡 ‘ 𝑦 ) )  +ℎ  ( 𝑡 ‘ 𝑧 ) ) } | 
						
							| 4 | 1 | hhnv | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 5 | 1 | hhba | ⊢  ℋ  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 6 | 1 | hhva | ⊢  +ℎ   =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 7 | 1 | hhsm | ⊢  ·ℎ   =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 8 | 5 5 6 6 7 7 2 | lnoval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑈  ∈  NrmCVec )  →  𝐿  =  { 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∣  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑡 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑡 ‘ 𝑦 ) )  +ℎ  ( 𝑡 ‘ 𝑧 ) ) } ) | 
						
							| 9 | 4 4 8 | mp2an | ⊢ 𝐿  =  { 𝑡  ∈  (  ℋ  ↑m   ℋ )  ∣  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( 𝑡 ‘ ( ( 𝑥  ·ℎ  𝑦 )  +ℎ  𝑧 ) )  =  ( ( 𝑥  ·ℎ  ( 𝑡 ‘ 𝑦 ) )  +ℎ  ( 𝑡 ‘ 𝑧 ) ) } | 
						
							| 10 | 3 9 | eqtr4i | ⊢ LinOp  =  𝐿 |