Metamath Proof Explorer


Theorem hhlnoi

Description: The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hhlno.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhlno.2 𝐿 = ( 𝑈 LnOp 𝑈 )
Assertion hhlnoi LinOp = 𝐿

Proof

Step Hyp Ref Expression
1 hhlno.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhlno.2 𝐿 = ( 𝑈 LnOp 𝑈 )
3 df-lnop LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }
4 1 hhnv 𝑈 ∈ NrmCVec
5 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
6 1 hhva + = ( +𝑣𝑈 )
7 1 hhsm · = ( ·𝑠OLD𝑈 )
8 5 5 6 6 7 7 2 lnoval ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝐿 = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) } )
9 4 4 8 mp2an 𝐿 = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }
10 3 9 eqtr4i LinOp = 𝐿