Step |
Hyp |
Ref |
Expression |
1 |
|
hhnmo.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
hhnmo.2 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑈 ) |
3 |
|
df-nmop |
⊢ normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
4 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
5 |
1
|
hhba |
⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
6 |
1
|
hhnm |
⊢ normℎ = ( normCV ‘ 𝑈 ) |
7 |
5 5 6 6 2
|
nmoofval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑁 = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) ) |
8 |
4 4 7
|
mp2an |
⊢ 𝑁 = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
9 |
3 8
|
eqtr4i |
⊢ normop = 𝑁 |