| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhnmo.1 | ⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 2 |  | hhnmo.2 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑈 ) | 
						
							| 3 |  | df-nmop | ⊢ normop  =  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↦  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 4 | 1 | hhnv | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 5 | 1 | hhba | ⊢  ℋ  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 6 | 1 | hhnm | ⊢ normℎ  =  ( normCV ‘ 𝑈 ) | 
						
							| 7 | 5 5 6 6 2 | nmoofval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑈  ∈  NrmCVec )  →  𝑁  =  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↦  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 8 | 4 4 7 | mp2an | ⊢ 𝑁  =  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↦  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 9 | 3 8 | eqtr4i | ⊢ normop  =  𝑁 |