Metamath Proof Explorer


Theorem hhnv

Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
Assertion hhnv 𝑈 ∈ NrmCVec

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hilablo + ∈ AbelOp
3 ablogrpo ( + ∈ AbelOp → + ∈ GrpOp )
4 2 3 ax-mp + ∈ GrpOp
5 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
6 5 fdmi dom + = ( ℋ × ℋ )
7 4 6 grporn ℋ = ran +
8 hilid ( GId ‘ + ) = 0
9 8 eqcomi 0 = ( GId ‘ + )
10 hilvc ⟨ + , · ⟩ ∈ CVecOLD
11 normf norm : ℋ ⟶ ℝ
12 norm-i ( 𝑥 ∈ ℋ → ( ( norm𝑥 ) = 0 ↔ 𝑥 = 0 ) )
13 12 biimpa ( ( 𝑥 ∈ ℋ ∧ ( norm𝑥 ) = 0 ) → 𝑥 = 0 )
14 norm-iii ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( norm ‘ ( 𝑦 · 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( norm𝑥 ) ) )
15 norm-ii ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( norm ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( norm𝑥 ) + ( norm𝑦 ) ) )
16 7 9 10 11 13 14 15 1 isnvi 𝑈 ∈ NrmCVec