Step |
Hyp |
Ref |
Expression |
1 |
|
hhnv.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
hilablo |
⊢ +ℎ ∈ AbelOp |
3 |
|
ablogrpo |
⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) |
4 |
2 3
|
ax-mp |
⊢ +ℎ ∈ GrpOp |
5 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
6 |
5
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
7 |
4 6
|
grporn |
⊢ ℋ = ran +ℎ |
8 |
|
hilid |
⊢ ( GId ‘ +ℎ ) = 0ℎ |
9 |
8
|
eqcomi |
⊢ 0ℎ = ( GId ‘ +ℎ ) |
10 |
|
hilvc |
⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD |
11 |
|
normf |
⊢ normℎ : ℋ ⟶ ℝ |
12 |
|
norm-i |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) = 0 ) → 𝑥 = 0ℎ ) |
14 |
|
norm-iii |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑦 ·ℎ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
15 |
|
norm-ii |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ) |
16 |
7 9 10 11 13 14 15 1
|
isnvi |
⊢ 𝑈 ∈ NrmCVec |