| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhnv.1 | ⊢ 𝑈  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 2 |  | eqid | ⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 3 | 2 | hhnv | ⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  NrmCVec | 
						
							| 4 |  | normpar | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 ) )  =  ( ( 2  ·  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) )  +  ( 2  ·  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 5 |  | hvsubval | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  −ℎ  𝑦 )  =  ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 )  =  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 ) )  =  ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) ) ) | 
						
							| 9 |  | hvaddcl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  +ℎ  𝑦 )  ∈   ℋ ) | 
						
							| 10 |  | normcl | ⊢ ( ( 𝑥  +ℎ  𝑦 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  ∈  ℝ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  ∈  ℂ ) | 
						
							| 13 | 12 | sqcld | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 14 |  | hvsubcl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  −ℎ  𝑦 )  ∈   ℋ ) | 
						
							| 15 |  | normcl | ⊢ ( ( 𝑥  −ℎ  𝑦 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) )  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( ( 𝑥  −ℎ  𝑦 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) )  ∈  ℂ ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) )  ∈  ℂ ) | 
						
							| 18 | 17 | sqcld | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 19 | 13 18 | addcomd | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 ) )  =  ( ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 ) ) ) | 
						
							| 20 | 8 19 | eqtr3d | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) )  =  ( ( ( normℎ ‘ ( 𝑥  −ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 ) ) ) | 
						
							| 21 |  | normcl | ⊢ ( 𝑥  ∈   ℋ  →  ( normℎ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( 𝑥  ∈   ℋ  →  ( normℎ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 23 | 22 | sqcld | ⊢ ( 𝑥  ∈   ℋ  →  ( ( normℎ ‘ 𝑥 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 24 |  | normcl | ⊢ ( 𝑦  ∈   ℋ  →  ( normℎ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( 𝑦  ∈   ℋ  →  ( normℎ ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 26 | 25 | sqcld | ⊢ ( 𝑦  ∈   ℋ  →  ( ( normℎ ‘ 𝑦 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 27 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 28 |  | adddi | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( normℎ ‘ 𝑥 ) ↑ 2 )  ∈  ℂ  ∧  ( ( normℎ ‘ 𝑦 ) ↑ 2 )  ∈  ℂ )  →  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) )  =  ( ( 2  ·  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) )  +  ( 2  ·  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 29 | 27 28 | mp3an1 | ⊢ ( ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  ∈  ℂ  ∧  ( ( normℎ ‘ 𝑦 ) ↑ 2 )  ∈  ℂ )  →  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) )  =  ( ( 2  ·  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) )  +  ( 2  ·  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 30 | 23 26 29 | syl2an | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) )  =  ( ( 2  ·  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) )  +  ( 2  ·  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 31 | 4 20 30 | 3eqtr4d | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 32 | 31 | rgen2 | ⊢ ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) | 
						
							| 33 |  | hilablo | ⊢  +ℎ   ∈  AbelOp | 
						
							| 34 | 33 | elexi | ⊢  +ℎ   ∈  V | 
						
							| 35 |  | hvmulex | ⊢  ·ℎ   ∈  V | 
						
							| 36 |  | normf | ⊢ normℎ :  ℋ ⟶ ℝ | 
						
							| 37 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 38 |  | fex | ⊢ ( ( normℎ :  ℋ ⟶ ℝ  ∧   ℋ  ∈  V )  →  normℎ  ∈  V ) | 
						
							| 39 | 36 37 38 | mp2an | ⊢ normℎ  ∈  V | 
						
							| 40 | 1 | eleq1i | ⊢ ( 𝑈  ∈  CPreHilOLD  ↔  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  CPreHilOLD ) | 
						
							| 41 |  | ablogrpo | ⊢ (  +ℎ   ∈  AbelOp  →   +ℎ   ∈  GrpOp ) | 
						
							| 42 | 33 41 | ax-mp | ⊢  +ℎ   ∈  GrpOp | 
						
							| 43 |  | ax-hfvadd | ⊢  +ℎ  : (  ℋ  ×   ℋ ) ⟶  ℋ | 
						
							| 44 | 43 | fdmi | ⊢ dom   +ℎ   =  (  ℋ  ×   ℋ ) | 
						
							| 45 | 42 44 | grporn | ⊢  ℋ  =  ran   +ℎ | 
						
							| 46 | 45 | isphg | ⊢ ( (  +ℎ   ∈  V  ∧   ·ℎ   ∈  V  ∧  normℎ  ∈  V )  →  ( 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  CPreHilOLD  ↔  ( 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  NrmCVec  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) | 
						
							| 47 | 40 46 | bitrid | ⊢ ( (  +ℎ   ∈  V  ∧   ·ℎ   ∈  V  ∧  normℎ  ∈  V )  →  ( 𝑈  ∈  CPreHilOLD  ↔  ( 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  NrmCVec  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) | 
						
							| 48 | 34 35 39 47 | mp3an | ⊢ ( 𝑈  ∈  CPreHilOLD  ↔  ( 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  NrmCVec  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑥  +ℎ  ( - 1  ·ℎ  𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( normℎ ‘ 𝑥 ) ↑ 2 )  +  ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) | 
						
							| 49 | 3 32 48 | mpbir2an | ⊢ 𝑈  ∈  CPreHilOLD |