Step |
Hyp |
Ref |
Expression |
1 |
|
hhnv.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
eqid |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
3 |
2
|
hhnv |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
4 |
|
normpar |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
5 |
|
hvsubval |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) = ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) |
9 |
|
hvaddcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) |
10 |
|
normcl |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ℝ ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ℂ ) |
13 |
12
|
sqcld |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ∈ ℂ ) |
14 |
|
hvsubcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) ∈ ℋ ) |
15 |
|
normcl |
⊢ ( ( 𝑥 −ℎ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( 𝑥 −ℎ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ∈ ℂ ) |
17 |
14 16
|
syl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ∈ ℂ ) |
18 |
17
|
sqcld |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ∈ ℂ ) |
19 |
13 18
|
addcomd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ) ) |
20 |
8 19
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ) ) |
21 |
|
normcl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℂ ) |
23 |
22
|
sqcld |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ) |
24 |
|
normcl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
25 |
24
|
recnd |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℂ ) |
26 |
25
|
sqcld |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) |
27 |
|
2cn |
⊢ 2 ∈ ℂ |
28 |
|
adddi |
⊢ ( ( 2 ∈ ℂ ∧ ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ∧ ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
29 |
27 28
|
mp3an1 |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ∧ ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
30 |
23 26 29
|
syl2an |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
31 |
4 20 30
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
32 |
31
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) |
33 |
|
hilablo |
⊢ +ℎ ∈ AbelOp |
34 |
33
|
elexi |
⊢ +ℎ ∈ V |
35 |
|
hvmulex |
⊢ ·ℎ ∈ V |
36 |
|
normf |
⊢ normℎ : ℋ ⟶ ℝ |
37 |
|
ax-hilex |
⊢ ℋ ∈ V |
38 |
|
fex |
⊢ ( ( normℎ : ℋ ⟶ ℝ ∧ ℋ ∈ V ) → normℎ ∈ V ) |
39 |
36 37 38
|
mp2an |
⊢ normℎ ∈ V |
40 |
1
|
eleq1i |
⊢ ( 𝑈 ∈ CPreHilOLD ↔ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD ) |
41 |
|
ablogrpo |
⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) |
42 |
33 41
|
ax-mp |
⊢ +ℎ ∈ GrpOp |
43 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
44 |
43
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
45 |
42 44
|
grporn |
⊢ ℋ = ran +ℎ |
46 |
45
|
isphg |
⊢ ( ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V ) → ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD ↔ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
47 |
40 46
|
syl5bb |
⊢ ( ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V ) → ( 𝑈 ∈ CPreHilOLD ↔ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
48 |
34 35 39 47
|
mp3an |
⊢ ( 𝑈 ∈ CPreHilOLD ↔ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
49 |
3 32 48
|
mpbir2an |
⊢ 𝑈 ∈ CPreHilOLD |