Metamath Proof Explorer


Theorem hhshsslem1

Description: Lemma for hhsssh . (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsst.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhsst.2 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
hhssp3.3 𝑊 ∈ ( SubSp ‘ 𝑈 )
hhssp3.4 𝐻 ⊆ ℋ
Assertion hhshsslem1 𝐻 = ( BaseSet ‘ 𝑊 )

Proof

Step Hyp Ref Expression
1 hhsst.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhsst.2 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
3 hhssp3.3 𝑊 ∈ ( SubSp ‘ 𝑈 )
4 hhssp3.4 𝐻 ⊆ ℋ
5 eqid ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 )
6 eqid ( +𝑣𝑊 ) = ( +𝑣𝑊 )
7 5 6 bafval ( BaseSet ‘ 𝑊 ) = ran ( +𝑣𝑊 )
8 1 hhnv 𝑈 ∈ NrmCVec
9 eqid ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 )
10 9 sspnv ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑊 ∈ NrmCVec )
11 8 3 10 mp2an 𝑊 ∈ NrmCVec
12 6 nvgrp ( 𝑊 ∈ NrmCVec → ( +𝑣𝑊 ) ∈ GrpOp )
13 grporndm ( ( +𝑣𝑊 ) ∈ GrpOp → ran ( +𝑣𝑊 ) = dom dom ( +𝑣𝑊 ) )
14 11 12 13 mp2b ran ( +𝑣𝑊 ) = dom dom ( +𝑣𝑊 )
15 2 fveq2i ( +𝑣𝑊 ) = ( +𝑣 ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ )
16 eqid ( +𝑣 ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) = ( +𝑣 ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ )
17 16 vafval ( +𝑣 ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) = ( 1st ‘ ( 1st ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) )
18 opex ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ ∈ V
19 normf norm : ℋ ⟶ ℝ
20 ax-hilex ℋ ∈ V
21 fex ( ( norm : ℋ ⟶ ℝ ∧ ℋ ∈ V ) → norm ∈ V )
22 19 20 21 mp2an norm ∈ V
23 22 resex ( norm𝐻 ) ∈ V
24 18 23 op1st ( 1st ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) = ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩
25 24 fveq2i ( 1st ‘ ( 1st ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) ) = ( 1st ‘ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ )
26 hilablo + ∈ AbelOp
27 resexg ( + ∈ AbelOp → ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ V )
28 26 27 ax-mp ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ V
29 hvmulex · ∈ V
30 29 resex ( · ↾ ( ℂ × 𝐻 ) ) ∈ V
31 28 30 op1st ( 1st ‘ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ ) = ( + ↾ ( 𝐻 × 𝐻 ) )
32 25 31 eqtri ( 1st ‘ ( 1st ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) ) = ( + ↾ ( 𝐻 × 𝐻 ) )
33 17 32 eqtri ( +𝑣 ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) = ( + ↾ ( 𝐻 × 𝐻 ) )
34 15 33 eqtri ( +𝑣𝑊 ) = ( + ↾ ( 𝐻 × 𝐻 ) )
35 34 dmeqi dom ( +𝑣𝑊 ) = dom ( + ↾ ( 𝐻 × 𝐻 ) )
36 xpss12 ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) )
37 4 4 36 mp2an ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ )
38 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
39 38 fdmi dom + = ( ℋ × ℋ )
40 37 39 sseqtrri ( 𝐻 × 𝐻 ) ⊆ dom +
41 ssdmres ( ( 𝐻 × 𝐻 ) ⊆ dom + ↔ dom ( + ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) )
42 40 41 mpbi dom ( + ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 )
43 35 42 eqtri dom ( +𝑣𝑊 ) = ( 𝐻 × 𝐻 )
44 43 dmeqi dom dom ( +𝑣𝑊 ) = dom ( 𝐻 × 𝐻 )
45 dmxpid dom ( 𝐻 × 𝐻 ) = 𝐻
46 44 45 eqtri dom dom ( +𝑣𝑊 ) = 𝐻
47 14 46 eqtri ran ( +𝑣𝑊 ) = 𝐻
48 7 47 eqtri ( BaseSet ‘ 𝑊 ) = 𝐻
49 48 eqcomi 𝐻 = ( BaseSet ‘ 𝑊 )