Step |
Hyp |
Ref |
Expression |
1 |
|
hhsst.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
hhsst.2 |
⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 |
3 |
|
hhssp3.3 |
⊢ 𝑊 ∈ ( SubSp ‘ 𝑈 ) |
4 |
|
hhssp3.4 |
⊢ 𝐻 ⊆ ℋ |
5 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
7 |
5 6
|
bafval |
⊢ ( BaseSet ‘ 𝑊 ) = ran ( +𝑣 ‘ 𝑊 ) |
8 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
9 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
10 |
9
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑊 ∈ NrmCVec ) |
11 |
8 3 10
|
mp2an |
⊢ 𝑊 ∈ NrmCVec |
12 |
6
|
nvgrp |
⊢ ( 𝑊 ∈ NrmCVec → ( +𝑣 ‘ 𝑊 ) ∈ GrpOp ) |
13 |
|
grporndm |
⊢ ( ( +𝑣 ‘ 𝑊 ) ∈ GrpOp → ran ( +𝑣 ‘ 𝑊 ) = dom dom ( +𝑣 ‘ 𝑊 ) ) |
14 |
11 12 13
|
mp2b |
⊢ ran ( +𝑣 ‘ 𝑊 ) = dom dom ( +𝑣 ‘ 𝑊 ) |
15 |
2
|
fveq2i |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) |
16 |
|
eqid |
⊢ ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) |
17 |
16
|
vafval |
⊢ ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = ( 1st ‘ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) ) |
18 |
|
opex |
⊢ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ∈ V |
19 |
|
normf |
⊢ normℎ : ℋ ⟶ ℝ |
20 |
|
ax-hilex |
⊢ ℋ ∈ V |
21 |
|
fex |
⊢ ( ( normℎ : ℋ ⟶ ℝ ∧ ℋ ∈ V ) → normℎ ∈ V ) |
22 |
19 20 21
|
mp2an |
⊢ normℎ ∈ V |
23 |
22
|
resex |
⊢ ( normℎ ↾ 𝐻 ) ∈ V |
24 |
18 23
|
op1st |
⊢ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 |
25 |
24
|
fveq2i |
⊢ ( 1st ‘ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) ) = ( 1st ‘ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ) |
26 |
|
hilablo |
⊢ +ℎ ∈ AbelOp |
27 |
|
resexg |
⊢ ( +ℎ ∈ AbelOp → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ V ) |
28 |
26 27
|
ax-mp |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ V |
29 |
|
hvmulex |
⊢ ·ℎ ∈ V |
30 |
29
|
resex |
⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ∈ V |
31 |
28 30
|
op1st |
⊢ ( 1st ‘ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
32 |
25 31
|
eqtri |
⊢ ( 1st ‘ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
33 |
17 32
|
eqtri |
⊢ ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
34 |
15 33
|
eqtri |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
35 |
34
|
dmeqi |
⊢ dom ( +𝑣 ‘ 𝑊 ) = dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
36 |
|
xpss12 |
⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) |
37 |
4 4 36
|
mp2an |
⊢ ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) |
38 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
39 |
38
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
40 |
37 39
|
sseqtrri |
⊢ ( 𝐻 × 𝐻 ) ⊆ dom +ℎ |
41 |
|
ssdmres |
⊢ ( ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) ) |
42 |
40 41
|
mpbi |
⊢ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) |
43 |
35 42
|
eqtri |
⊢ dom ( +𝑣 ‘ 𝑊 ) = ( 𝐻 × 𝐻 ) |
44 |
43
|
dmeqi |
⊢ dom dom ( +𝑣 ‘ 𝑊 ) = dom ( 𝐻 × 𝐻 ) |
45 |
|
dmxpid |
⊢ dom ( 𝐻 × 𝐻 ) = 𝐻 |
46 |
44 45
|
eqtri |
⊢ dom dom ( +𝑣 ‘ 𝑊 ) = 𝐻 |
47 |
14 46
|
eqtri |
⊢ ran ( +𝑣 ‘ 𝑊 ) = 𝐻 |
48 |
7 47
|
eqtri |
⊢ ( BaseSet ‘ 𝑊 ) = 𝐻 |
49 |
48
|
eqcomi |
⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |