Step |
Hyp |
Ref |
Expression |
1 |
|
hhsst.1 |
⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
2 |
|
hhsst.2 |
⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 |
3 |
|
hhssp3.3 |
⊢ 𝑊 ∈ ( SubSp ‘ 𝑈 ) |
4 |
|
hhssp3.4 |
⊢ 𝐻 ⊆ ℋ |
5 |
1
|
hhnv |
⊢ 𝑈 ∈ NrmCVec |
6 |
1
|
hh0v |
⊢ 0ℎ = ( 0vec ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
9 |
6 7 8
|
sspz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → ( 0vec ‘ 𝑊 ) = 0ℎ ) |
10 |
5 3 9
|
mp2an |
⊢ ( 0vec ‘ 𝑊 ) = 0ℎ |
11 |
8
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑊 ∈ NrmCVec ) |
12 |
5 3 11
|
mp2an |
⊢ 𝑊 ∈ NrmCVec |
13 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
14 |
13 7
|
nvzcl |
⊢ ( 𝑊 ∈ NrmCVec → ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
15 |
12 14
|
ax-mp |
⊢ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) |
16 |
1 2 3 4
|
hhshsslem1 |
⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |
17 |
15 16
|
eleqtrri |
⊢ ( 0vec ‘ 𝑊 ) ∈ 𝐻 |
18 |
10 17
|
eqeltrri |
⊢ 0ℎ ∈ 𝐻 |
19 |
4 18
|
pm3.2i |
⊢ ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) |
20 |
1
|
hhva |
⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
21 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
22 |
16 20 21 8
|
sspgval |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) |
23 |
5 3 22
|
mpanl12 |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) |
24 |
16 21
|
nvgcl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
25 |
12 24
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
26 |
23 25
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) |
27 |
26
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 |
28 |
1
|
hhsm |
⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
29 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
30 |
16 28 29 8
|
sspsval |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) ) |
31 |
5 3 30
|
mpanl12 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) ) |
32 |
16 29
|
nvscl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
33 |
12 32
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
34 |
31 33
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) |
35 |
34
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 |
36 |
27 35
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) |
37 |
|
issh2 |
⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
38 |
19 36 37
|
mpbir2an |
⊢ 𝐻 ∈ Sℋ |