Step |
Hyp |
Ref |
Expression |
1 |
|
hhssabl.1 |
⊢ 𝐻 ∈ Sℋ |
2 |
1
|
hhssabloilem |
⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ) |
3 |
2
|
simp2i |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp |
4 |
1
|
shssii |
⊢ 𝐻 ⊆ ℋ |
5 |
|
xpss12 |
⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) |
6 |
4 4 5
|
mp2an |
⊢ ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) |
7 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
8 |
7
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
9 |
6 8
|
sseqtrri |
⊢ ( 𝐻 × 𝐻 ) ⊆ dom +ℎ |
10 |
|
ssdmres |
⊢ ( ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) ) |
11 |
9 10
|
mpbi |
⊢ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) |
12 |
1
|
sheli |
⊢ ( 𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ ) |
13 |
1
|
sheli |
⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
14 |
|
ax-hvcom |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
15 |
12 13 14
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
16 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) |
17 |
|
ovres |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( 𝑦 +ℎ 𝑥 ) ) |
18 |
17
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( 𝑦 +ℎ 𝑥 ) ) |
19 |
15 16 18
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) ) |
20 |
3 11 19
|
isabloi |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp |