Metamath Proof Explorer


Theorem hhssabloi

Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Proof shortened by AV, 27-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis hhssabl.1 𝐻S
Assertion hhssabloi ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp

Proof

Step Hyp Ref Expression
1 hhssabl.1 𝐻S
2 1 hhssabloilem ( + ∈ GrpOp ∧ ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ + )
3 2 simp2i ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp
4 1 shssii 𝐻 ⊆ ℋ
5 xpss12 ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) )
6 4 4 5 mp2an ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ )
7 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
8 7 fdmi dom + = ( ℋ × ℋ )
9 6 8 sseqtrri ( 𝐻 × 𝐻 ) ⊆ dom +
10 ssdmres ( ( 𝐻 × 𝐻 ) ⊆ dom + ↔ dom ( + ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) )
11 9 10 mpbi dom ( + ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 )
12 1 sheli ( 𝑥𝐻𝑥 ∈ ℋ )
13 1 sheli ( 𝑦𝐻𝑦 ∈ ℋ )
14 ax-hvcom ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
15 12 13 14 syl2an ( ( 𝑥𝐻𝑦𝐻 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
16 ovres ( ( 𝑥𝐻𝑦𝐻 ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑥 + 𝑦 ) )
17 ovres ( ( 𝑦𝐻𝑥𝐻 ) → ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( 𝑦 + 𝑥 ) )
18 17 ancoms ( ( 𝑥𝐻𝑦𝐻 ) → ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( 𝑦 + 𝑥 ) )
19 15 16 18 3eqtr4d ( ( 𝑥𝐻𝑦𝐻 ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) )
20 3 11 19 isabloi ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp