Step |
Hyp |
Ref |
Expression |
1 |
|
hhssabl.1 |
⊢ 𝐻 ∈ Sℋ |
2 |
|
hilablo |
⊢ +ℎ ∈ AbelOp |
3 |
|
ablogrpo |
⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) |
4 |
2 3
|
ax-mp |
⊢ +ℎ ∈ GrpOp |
5 |
1
|
elexi |
⊢ 𝐻 ∈ V |
6 |
|
eqid |
⊢ ran +ℎ = ran +ℎ |
7 |
6
|
grpofo |
⊢ ( +ℎ ∈ GrpOp → +ℎ : ( ran +ℎ × ran +ℎ ) –onto→ ran +ℎ ) |
8 |
|
fof |
⊢ ( +ℎ : ( ran +ℎ × ran +ℎ ) –onto→ ran +ℎ → +ℎ : ( ran +ℎ × ran +ℎ ) ⟶ ran +ℎ ) |
9 |
4 7 8
|
mp2b |
⊢ +ℎ : ( ran +ℎ × ran +ℎ ) ⟶ ran +ℎ |
10 |
1
|
shssii |
⊢ 𝐻 ⊆ ℋ |
11 |
|
df-hba |
⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
12 |
|
eqid |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
13 |
12
|
hhva |
⊢ +ℎ = ( +𝑣 ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
14 |
11 13
|
bafval |
⊢ ℋ = ran +ℎ |
15 |
10 14
|
sseqtri |
⊢ 𝐻 ⊆ ran +ℎ |
16 |
|
xpss12 |
⊢ ( ( 𝐻 ⊆ ran +ℎ ∧ 𝐻 ⊆ ran +ℎ ) → ( 𝐻 × 𝐻 ) ⊆ ( ran +ℎ × ran +ℎ ) ) |
17 |
15 15 16
|
mp2an |
⊢ ( 𝐻 × 𝐻 ) ⊆ ( ran +ℎ × ran +ℎ ) |
18 |
|
fssres |
⊢ ( ( +ℎ : ( ran +ℎ × ran +ℎ ) ⟶ ran +ℎ ∧ ( 𝐻 × 𝐻 ) ⊆ ( ran +ℎ × ran +ℎ ) ) → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran +ℎ ) |
19 |
9 17 18
|
mp2an |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran +ℎ |
20 |
|
ffn |
⊢ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran +ℎ → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) ) |
21 |
19 20
|
ax-mp |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) |
22 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) |
23 |
|
shaddcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) |
24 |
1 23
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) |
25 |
22 24
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ) |
26 |
25
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 |
27 |
|
ffnov |
⊢ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻 ↔ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) ∧ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ) ) |
28 |
21 26 27
|
mpbir2an |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻 |
29 |
22
|
oveq1d |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) = ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) ) |
30 |
29
|
3adant3 |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) = ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) ) |
31 |
|
ovres |
⊢ ( ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) ) |
32 |
25 31
|
stoic3 |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) ) |
33 |
|
ovres |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑦 +ℎ 𝑧 ) ) |
34 |
33
|
oveq2d |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
35 |
34
|
3adant1 |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
36 |
28
|
fovcl |
⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ∈ 𝐻 ) |
37 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) |
38 |
36 37
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) |
39 |
38
|
3impb |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) |
40 |
15
|
sseli |
⊢ ( 𝑥 ∈ 𝐻 → 𝑥 ∈ ran +ℎ ) |
41 |
15
|
sseli |
⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ran +ℎ ) |
42 |
15
|
sseli |
⊢ ( 𝑧 ∈ 𝐻 → 𝑧 ∈ ran +ℎ ) |
43 |
6
|
grpoass |
⊢ ( ( +ℎ ∈ GrpOp ∧ ( 𝑥 ∈ ran +ℎ ∧ 𝑦 ∈ ran +ℎ ∧ 𝑧 ∈ ran +ℎ ) ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
44 |
4 43
|
mpan |
⊢ ( ( 𝑥 ∈ ran +ℎ ∧ 𝑦 ∈ ran +ℎ ∧ 𝑧 ∈ ran +ℎ ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
45 |
40 41 42 44
|
syl3an |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
46 |
35 39 45
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) ) |
47 |
30 32 46
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) |
48 |
|
hilid |
⊢ ( GId ‘ +ℎ ) = 0ℎ |
49 |
|
sh0 |
⊢ ( 𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻 ) |
50 |
1 49
|
ax-mp |
⊢ 0ℎ ∈ 𝐻 |
51 |
48 50
|
eqeltri |
⊢ ( GId ‘ +ℎ ) ∈ 𝐻 |
52 |
|
ovres |
⊢ ( ( ( GId ‘ +ℎ ) ∈ 𝐻 ∧ 𝑥 ∈ 𝐻 ) → ( ( GId ‘ +ℎ ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) ) |
53 |
51 52
|
mpan |
⊢ ( 𝑥 ∈ 𝐻 → ( ( GId ‘ +ℎ ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) ) |
54 |
|
eqid |
⊢ ( GId ‘ +ℎ ) = ( GId ‘ +ℎ ) |
55 |
6 54
|
grpolid |
⊢ ( ( +ℎ ∈ GrpOp ∧ 𝑥 ∈ ran +ℎ ) → ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) = 𝑥 ) |
56 |
4 40 55
|
sylancr |
⊢ ( 𝑥 ∈ 𝐻 → ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) = 𝑥 ) |
57 |
53 56
|
eqtrd |
⊢ ( 𝑥 ∈ 𝐻 → ( ( GId ‘ +ℎ ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = 𝑥 ) |
58 |
12
|
hhnv |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
59 |
12
|
hhsm |
⊢ ·ℎ = ( ·𝑠OLD ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
60 |
|
eqid |
⊢ ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) = ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) |
61 |
13 59 60
|
nvinvfval |
⊢ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec → ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) = ( inv ‘ +ℎ ) ) |
62 |
58 61
|
ax-mp |
⊢ ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) = ( inv ‘ +ℎ ) |
63 |
62
|
eqcomi |
⊢ ( inv ‘ +ℎ ) = ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) |
64 |
63
|
fveq1i |
⊢ ( ( inv ‘ +ℎ ) ‘ 𝑥 ) = ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) |
65 |
|
ax-hfvmul |
⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ |
66 |
|
ffn |
⊢ ( ·ℎ : ( ℂ × ℋ ) ⟶ ℋ → ·ℎ Fn ( ℂ × ℋ ) ) |
67 |
65 66
|
ax-mp |
⊢ ·ℎ Fn ( ℂ × ℋ ) |
68 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
69 |
60
|
curry1val |
⊢ ( ( ·ℎ Fn ( ℂ × ℋ ) ∧ - 1 ∈ ℂ ) → ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) = ( - 1 ·ℎ 𝑥 ) ) |
70 |
67 68 69
|
mp2an |
⊢ ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) = ( - 1 ·ℎ 𝑥 ) |
71 |
|
shmulcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( - 1 ·ℎ 𝑥 ) ∈ 𝐻 ) |
72 |
1 68 71
|
mp3an12 |
⊢ ( 𝑥 ∈ 𝐻 → ( - 1 ·ℎ 𝑥 ) ∈ 𝐻 ) |
73 |
70 72
|
eqeltrid |
⊢ ( 𝑥 ∈ 𝐻 → ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) ∈ 𝐻 ) |
74 |
64 73
|
eqeltrid |
⊢ ( 𝑥 ∈ 𝐻 → ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ∈ 𝐻 ) |
75 |
|
ovres |
⊢ ( ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ∈ 𝐻 ∧ 𝑥 ∈ 𝐻 ) → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) ) |
76 |
74 75
|
mpancom |
⊢ ( 𝑥 ∈ 𝐻 → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) ) |
77 |
|
eqid |
⊢ ( inv ‘ +ℎ ) = ( inv ‘ +ℎ ) |
78 |
6 54 77
|
grpolinv |
⊢ ( ( +ℎ ∈ GrpOp ∧ 𝑥 ∈ ran +ℎ ) → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) = ( GId ‘ +ℎ ) ) |
79 |
4 40 78
|
sylancr |
⊢ ( 𝑥 ∈ 𝐻 → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) = ( GId ‘ +ℎ ) ) |
80 |
76 79
|
eqtrd |
⊢ ( 𝑥 ∈ 𝐻 → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( GId ‘ +ℎ ) ) |
81 |
5 28 47 51 57 74 80
|
isgrpoi |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp |
82 |
|
resss |
⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ |
83 |
4 81 82
|
3pm3.2i |
⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ) |