Metamath Proof Explorer


Theorem hhssabloilem

Description: Lemma for hhssabloi . Formerly part of proof for hhssabloi which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Revised by AV, 27-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis hhssabl.1 𝐻S
Assertion hhssabloilem ( + ∈ GrpOp ∧ ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ + )

Proof

Step Hyp Ref Expression
1 hhssabl.1 𝐻S
2 hilablo + ∈ AbelOp
3 ablogrpo ( + ∈ AbelOp → + ∈ GrpOp )
4 2 3 ax-mp + ∈ GrpOp
5 1 elexi 𝐻 ∈ V
6 eqid ran + = ran +
7 6 grpofo ( + ∈ GrpOp → + : ( ran + × ran + ) –onto→ ran + )
8 fof ( + : ( ran + × ran + ) –onto→ ran + → + : ( ran + × ran + ) ⟶ ran + )
9 4 7 8 mp2b + : ( ran + × ran + ) ⟶ ran +
10 1 shssii 𝐻 ⊆ ℋ
11 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
12 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
13 12 hhva + = ( +𝑣 ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
14 11 13 bafval ℋ = ran +
15 10 14 sseqtri 𝐻 ⊆ ran +
16 xpss12 ( ( 𝐻 ⊆ ran +𝐻 ⊆ ran + ) → ( 𝐻 × 𝐻 ) ⊆ ( ran + × ran + ) )
17 15 15 16 mp2an ( 𝐻 × 𝐻 ) ⊆ ( ran + × ran + )
18 fssres ( ( + : ( ran + × ran + ) ⟶ ran + ∧ ( 𝐻 × 𝐻 ) ⊆ ( ran + × ran + ) ) → ( + ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran + )
19 9 17 18 mp2an ( + ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran +
20 ffn ( ( + ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran + → ( + ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) )
21 19 20 ax-mp ( + ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 )
22 ovres ( ( 𝑥𝐻𝑦𝐻 ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑥 + 𝑦 ) )
23 shaddcl ( ( 𝐻S𝑥𝐻𝑦𝐻 ) → ( 𝑥 + 𝑦 ) ∈ 𝐻 )
24 1 23 mp3an1 ( ( 𝑥𝐻𝑦𝐻 ) → ( 𝑥 + 𝑦 ) ∈ 𝐻 )
25 22 24 eqeltrd ( ( 𝑥𝐻𝑦𝐻 ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 )
26 25 rgen2 𝑥𝐻𝑦𝐻 ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻
27 ffnov ( ( + ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻 ↔ ( ( + ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) ∧ ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ) )
28 21 26 27 mpbir2an ( + ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻
29 22 oveq1d ( ( 𝑥𝐻𝑦𝐻 ) → ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) + 𝑧 ) = ( ( 𝑥 + 𝑦 ) + 𝑧 ) )
30 29 3adant3 ( ( 𝑥𝐻𝑦𝐻𝑧𝐻 ) → ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) + 𝑧 ) = ( ( 𝑥 + 𝑦 ) + 𝑧 ) )
31 ovres ( ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻𝑧𝐻 ) → ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) + 𝑧 ) )
32 25 31 stoic3 ( ( 𝑥𝐻𝑦𝐻𝑧𝐻 ) → ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) + 𝑧 ) )
33 ovres ( ( 𝑦𝐻𝑧𝐻 ) → ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑦 + 𝑧 ) )
34 33 oveq2d ( ( 𝑦𝐻𝑧𝐻 ) → ( 𝑥 + ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
35 34 3adant1 ( ( 𝑥𝐻𝑦𝐻𝑧𝐻 ) → ( 𝑥 + ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
36 28 fovcl ( ( 𝑦𝐻𝑧𝐻 ) → ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ∈ 𝐻 )
37 ovres ( ( 𝑥𝐻 ∧ ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ∈ 𝐻 ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 + ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) )
38 36 37 sylan2 ( ( 𝑥𝐻 ∧ ( 𝑦𝐻𝑧𝐻 ) ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 + ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) )
39 38 3impb ( ( 𝑥𝐻𝑦𝐻𝑧𝐻 ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 + ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) )
40 15 sseli ( 𝑥𝐻𝑥 ∈ ran + )
41 15 sseli ( 𝑦𝐻𝑦 ∈ ran + )
42 15 sseli ( 𝑧𝐻𝑧 ∈ ran + )
43 6 grpoass ( ( + ∈ GrpOp ∧ ( 𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
44 4 43 mpan ( ( 𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
45 40 41 42 44 syl3an ( ( 𝑥𝐻𝑦𝐻𝑧𝐻 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
46 35 39 45 3eqtr4d ( ( 𝑥𝐻𝑦𝐻𝑧𝐻 ) → ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( ( 𝑥 + 𝑦 ) + 𝑧 ) )
47 30 32 46 3eqtr4d ( ( 𝑥𝐻𝑦𝐻𝑧𝐻 ) → ( ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑥 ( + ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) )
48 hilid ( GId ‘ + ) = 0
49 sh0 ( 𝐻S → 0𝐻 )
50 1 49 ax-mp 0𝐻
51 48 50 eqeltri ( GId ‘ + ) ∈ 𝐻
52 ovres ( ( ( GId ‘ + ) ∈ 𝐻𝑥𝐻 ) → ( ( GId ‘ + ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( GId ‘ + ) + 𝑥 ) )
53 51 52 mpan ( 𝑥𝐻 → ( ( GId ‘ + ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( GId ‘ + ) + 𝑥 ) )
54 eqid ( GId ‘ + ) = ( GId ‘ + )
55 6 54 grpolid ( ( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → ( ( GId ‘ + ) + 𝑥 ) = 𝑥 )
56 4 40 55 sylancr ( 𝑥𝐻 → ( ( GId ‘ + ) + 𝑥 ) = 𝑥 )
57 53 56 eqtrd ( 𝑥𝐻 → ( ( GId ‘ + ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = 𝑥 )
58 12 hhnv ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec
59 12 hhsm · = ( ·𝑠OLD ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
60 eqid ( · ( 2nd ↾ ( { - 1 } × V ) ) ) = ( · ( 2nd ↾ ( { - 1 } × V ) ) )
61 13 59 60 nvinvfval ( ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec → ( · ( 2nd ↾ ( { - 1 } × V ) ) ) = ( inv ‘ + ) )
62 58 61 ax-mp ( · ( 2nd ↾ ( { - 1 } × V ) ) ) = ( inv ‘ + )
63 62 eqcomi ( inv ‘ + ) = ( · ( 2nd ↾ ( { - 1 } × V ) ) )
64 63 fveq1i ( ( inv ‘ + ) ‘ 𝑥 ) = ( ( · ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 )
65 ax-hfvmul · : ( ℂ × ℋ ) ⟶ ℋ
66 ffn ( · : ( ℂ × ℋ ) ⟶ ℋ → · Fn ( ℂ × ℋ ) )
67 65 66 ax-mp · Fn ( ℂ × ℋ )
68 neg1cn - 1 ∈ ℂ
69 60 curry1val ( ( · Fn ( ℂ × ℋ ) ∧ - 1 ∈ ℂ ) → ( ( · ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) = ( - 1 · 𝑥 ) )
70 67 68 69 mp2an ( ( · ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) = ( - 1 · 𝑥 )
71 shmulcl ( ( 𝐻S ∧ - 1 ∈ ℂ ∧ 𝑥𝐻 ) → ( - 1 · 𝑥 ) ∈ 𝐻 )
72 1 68 71 mp3an12 ( 𝑥𝐻 → ( - 1 · 𝑥 ) ∈ 𝐻 )
73 70 72 eqeltrid ( 𝑥𝐻 → ( ( · ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) ∈ 𝐻 )
74 64 73 eqeltrid ( 𝑥𝐻 → ( ( inv ‘ + ) ‘ 𝑥 ) ∈ 𝐻 )
75 ovres ( ( ( ( inv ‘ + ) ‘ 𝑥 ) ∈ 𝐻𝑥𝐻 ) → ( ( ( inv ‘ + ) ‘ 𝑥 ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( ( inv ‘ + ) ‘ 𝑥 ) + 𝑥 ) )
76 74 75 mpancom ( 𝑥𝐻 → ( ( ( inv ‘ + ) ‘ 𝑥 ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( ( inv ‘ + ) ‘ 𝑥 ) + 𝑥 ) )
77 eqid ( inv ‘ + ) = ( inv ‘ + )
78 6 54 77 grpolinv ( ( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → ( ( ( inv ‘ + ) ‘ 𝑥 ) + 𝑥 ) = ( GId ‘ + ) )
79 4 40 78 sylancr ( 𝑥𝐻 → ( ( ( inv ‘ + ) ‘ 𝑥 ) + 𝑥 ) = ( GId ‘ + ) )
80 76 79 eqtrd ( 𝑥𝐻 → ( ( ( inv ‘ + ) ‘ 𝑥 ) ( + ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( GId ‘ + ) )
81 5 28 47 51 57 74 80 isgrpoi ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp
82 resss ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ +
83 4 81 82 3pm3.2i ( + ∈ GrpOp ∧ ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ + )