Metamath Proof Explorer


Theorem hhssbnOLD

Description: Obsolete version of cssbn : Banach space property of a closed subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hhssbnOLD.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
hhssbnOLD.2 𝐻C
Assertion hhssbnOLD 𝑊 ∈ CBan

Proof

Step Hyp Ref Expression
1 hhssbnOLD.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 hhssbnOLD.2 𝐻C
3 2 chshii 𝐻S
4 1 3 hhssnv 𝑊 ∈ NrmCVec
5 eqid ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 )
6 1 5 2 hhsscms ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝐻 )
7 1 3 hhssba 𝐻 = ( BaseSet ‘ 𝑊 )
8 7 5 iscbn ( 𝑊 ∈ CBan ↔ ( 𝑊 ∈ NrmCVec ∧ ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝐻 ) ) )
9 4 6 8 mpbir2an 𝑊 ∈ CBan