| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhssims2.1 | ⊢ 𝑊  =  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 | 
						
							| 2 |  | hhssims2.3 | ⊢ 𝐷  =  ( IndMet ‘ 𝑊 ) | 
						
							| 3 |  | hhsscms.3 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 4 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 5 | 3 | chshii | ⊢ 𝐻  ∈   Sℋ | 
						
							| 6 | 1 2 5 | hhssmet | ⊢ 𝐷  ∈  ( Met ‘ 𝐻 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ∈  ( Cau ‘ 𝐷 ) ) | 
						
							| 8 | 1 2 5 | hhssims2 | ⊢ 𝐷  =  ( ( normℎ  ∘   −ℎ  )  ↾  ( 𝐻  ×  𝐻 ) ) | 
						
							| 9 | 8 | fveq2i | ⊢ ( Cau ‘ 𝐷 )  =  ( Cau ‘ ( ( normℎ  ∘   −ℎ  )  ↾  ( 𝐻  ×  𝐻 ) ) ) | 
						
							| 10 | 7 9 | eleqtrdi | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ∈  ( Cau ‘ ( ( normℎ  ∘   −ℎ  )  ↾  ( 𝐻  ×  𝐻 ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( normℎ  ∘   −ℎ  )  =  ( normℎ  ∘   −ℎ  ) | 
						
							| 12 | 11 | hilxmet | ⊢ ( normℎ  ∘   −ℎ  )  ∈  ( ∞Met ‘  ℋ ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓 : ℕ ⟶ 𝐻 ) | 
						
							| 14 |  | causs | ⊢ ( ( ( normℎ  ∘   −ℎ  )  ∈  ( ∞Met ‘  ℋ )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  ( 𝑓  ∈  ( Cau ‘ ( normℎ  ∘   −ℎ  ) )  ↔  𝑓  ∈  ( Cau ‘ ( ( normℎ  ∘   −ℎ  )  ↾  ( 𝐻  ×  𝐻 ) ) ) ) ) | 
						
							| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  ( 𝑓  ∈  ( Cau ‘ ( normℎ  ∘   −ℎ  ) )  ↔  𝑓  ∈  ( Cau ‘ ( ( normℎ  ∘   −ℎ  )  ↾  ( 𝐻  ×  𝐻 ) ) ) ) ) | 
						
							| 16 | 10 15 | mpbird | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ∈  ( Cau ‘ ( normℎ  ∘   −ℎ  ) ) ) | 
						
							| 17 | 3 | chssii | ⊢ 𝐻  ⊆   ℋ | 
						
							| 18 |  | fss | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐻  ∧  𝐻  ⊆   ℋ )  →  𝑓 : ℕ ⟶  ℋ ) | 
						
							| 19 | 13 17 18 | sylancl | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓 : ℕ ⟶  ℋ ) | 
						
							| 20 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 21 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 22 | 20 21 | elmap | ⊢ ( 𝑓  ∈  (  ℋ  ↑m  ℕ )  ↔  𝑓 : ℕ ⟶  ℋ ) | 
						
							| 23 | 19 22 | sylibr | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ∈  (  ℋ  ↑m  ℕ ) ) | 
						
							| 24 |  | eqid | ⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 25 | 24 11 | hhims | ⊢ ( normℎ  ∘   −ℎ  )  =  ( IndMet ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 26 | 24 25 | hhcau | ⊢ Cauchy  =  ( ( Cau ‘ ( normℎ  ∘   −ℎ  ) )  ∩  (  ℋ  ↑m  ℕ ) ) | 
						
							| 27 | 26 | elin2 | ⊢ ( 𝑓  ∈  Cauchy  ↔  ( 𝑓  ∈  ( Cau ‘ ( normℎ  ∘   −ℎ  ) )  ∧  𝑓  ∈  (  ℋ  ↑m  ℕ ) ) ) | 
						
							| 28 | 16 23 27 | sylanbrc | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ∈  Cauchy ) | 
						
							| 29 |  | ax-hcompl | ⊢ ( 𝑓  ∈  Cauchy  →  ∃ 𝑥  ∈   ℋ 𝑓  ⇝𝑣  𝑥 ) | 
						
							| 30 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 31 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 32 | 30 31 | breldm | ⊢ ( 𝑓  ⇝𝑣  𝑥  →  𝑓  ∈  dom   ⇝𝑣  ) | 
						
							| 33 | 32 | rexlimivw | ⊢ ( ∃ 𝑥  ∈   ℋ 𝑓  ⇝𝑣  𝑥  →  𝑓  ∈  dom   ⇝𝑣  ) | 
						
							| 34 | 28 29 33 | 3syl | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ∈  dom   ⇝𝑣  ) | 
						
							| 35 |  | hlimf | ⊢  ⇝𝑣  : dom   ⇝𝑣  ⟶  ℋ | 
						
							| 36 |  | ffun | ⊢ (  ⇝𝑣  : dom   ⇝𝑣  ⟶  ℋ  →  Fun   ⇝𝑣  ) | 
						
							| 37 |  | funfvbrb | ⊢ ( Fun   ⇝𝑣   →  ( 𝑓  ∈  dom   ⇝𝑣   ↔  𝑓  ⇝𝑣  (  ⇝𝑣  ‘ 𝑓 ) ) ) | 
						
							| 38 | 35 36 37 | mp2b | ⊢ ( 𝑓  ∈  dom   ⇝𝑣   ↔  𝑓  ⇝𝑣  (  ⇝𝑣  ‘ 𝑓 ) ) | 
						
							| 39 | 34 38 | sylib | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ⇝𝑣  (  ⇝𝑣  ‘ 𝑓 ) ) | 
						
							| 40 |  | eqid | ⊢ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  =  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) | 
						
							| 41 | 24 25 40 | hhlm | ⊢  ⇝𝑣   =  ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) )  ↾  (  ℋ  ↑m  ℕ ) ) | 
						
							| 42 |  | resss | ⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) )  ↾  (  ℋ  ↑m  ℕ ) )  ⊆  ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) | 
						
							| 43 | 41 42 | eqsstri | ⊢  ⇝𝑣   ⊆  ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) | 
						
							| 44 | 43 | ssbri | ⊢ ( 𝑓  ⇝𝑣  (  ⇝𝑣  ‘ 𝑓 )  →  𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) (  ⇝𝑣  ‘ 𝑓 ) ) | 
						
							| 45 | 39 44 | syl | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) (  ⇝𝑣  ‘ 𝑓 ) ) | 
						
							| 46 | 8 40 4 | metrest | ⊢ ( ( ( normℎ  ∘   −ℎ  )  ∈  ( ∞Met ‘  ℋ )  ∧  𝐻  ⊆   ℋ )  →  ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ↾t  𝐻 )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 47 | 12 17 46 | mp2an | ⊢ ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ↾t  𝐻 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 48 | 47 | eqcomi | ⊢ ( MetOpen ‘ 𝐷 )  =  ( ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ↾t  𝐻 ) | 
						
							| 49 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 50 | 3 | a1i | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝐻  ∈   Cℋ  ) | 
						
							| 51 | 40 | mopntop | ⊢ ( ( normℎ  ∘   −ℎ  )  ∈  ( ∞Met ‘  ℋ )  →  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ∈  Top ) | 
						
							| 52 | 12 51 | mp1i | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) )  ∈  Top ) | 
						
							| 53 |  | fvex | ⊢ (  ⇝𝑣  ‘ 𝑓 )  ∈  V | 
						
							| 54 | 53 | chlimi | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝑓 : ℕ ⟶ 𝐻  ∧  𝑓  ⇝𝑣  (  ⇝𝑣  ‘ 𝑓 ) )  →  (  ⇝𝑣  ‘ 𝑓 )  ∈  𝐻 ) | 
						
							| 55 | 50 13 39 54 | syl3anc | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  (  ⇝𝑣  ‘ 𝑓 )  ∈  𝐻 ) | 
						
							| 56 |  | 1zzd | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  1  ∈  ℤ ) | 
						
							| 57 | 48 49 50 52 55 56 13 | lmss | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  ( 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ  ∘   −ℎ  ) ) ) (  ⇝𝑣  ‘ 𝑓 )  ↔  𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) (  ⇝𝑣  ‘ 𝑓 ) ) ) | 
						
							| 58 | 45 57 | mpbid | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) (  ⇝𝑣  ‘ 𝑓 ) ) | 
						
							| 59 | 30 53 | breldm | ⊢ ( 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) (  ⇝𝑣  ‘ 𝑓 )  →  𝑓  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝑓  ∈  ( Cau ‘ 𝐷 )  ∧  𝑓 : ℕ ⟶ 𝐻 )  →  𝑓  ∈  dom  ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 61 | 4 6 60 | iscmet3i | ⊢ 𝐷  ∈  ( CMet ‘ 𝐻 ) |