Metamath Proof Explorer


Theorem hhssmet

Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
hhssims2.3 𝐷 = ( IndMet ‘ 𝑊 )
hhssims2.2 𝐻S
Assertion hhssmet 𝐷 ∈ ( Met ‘ 𝐻 )

Proof

Step Hyp Ref Expression
1 hhssims2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 hhssims2.3 𝐷 = ( IndMet ‘ 𝑊 )
3 hhssims2.2 𝐻S
4 1 3 hhssnv 𝑊 ∈ NrmCVec
5 1 3 hhssba 𝐻 = ( BaseSet ‘ 𝑊 )
6 5 2 imsmet ( 𝑊 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝐻 ) )
7 4 6 ax-mp 𝐷 ∈ ( Met ‘ 𝐻 )