| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhssnvt.1 | ⊢ 𝑊  =  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 | 
						
							| 2 |  | hhssnv.2 | ⊢ 𝐻  ∈   Sℋ | 
						
							| 3 | 2 | hhssabloi | ⊢ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  AbelOp | 
						
							| 4 |  | ablogrpo | ⊢ ( (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  AbelOp  →  (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  GrpOp ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  GrpOp | 
						
							| 6 | 2 | shssii | ⊢ 𝐻  ⊆   ℋ | 
						
							| 7 |  | xpss12 | ⊢ ( ( 𝐻  ⊆   ℋ  ∧  𝐻  ⊆   ℋ )  →  ( 𝐻  ×  𝐻 )  ⊆  (  ℋ  ×   ℋ ) ) | 
						
							| 8 | 6 6 7 | mp2an | ⊢ ( 𝐻  ×  𝐻 )  ⊆  (  ℋ  ×   ℋ ) | 
						
							| 9 |  | ax-hfvadd | ⊢  +ℎ  : (  ℋ  ×   ℋ ) ⟶  ℋ | 
						
							| 10 | 9 | fdmi | ⊢ dom   +ℎ   =  (  ℋ  ×   ℋ ) | 
						
							| 11 | 8 10 | sseqtrri | ⊢ ( 𝐻  ×  𝐻 )  ⊆  dom   +ℎ | 
						
							| 12 |  | ssdmres | ⊢ ( ( 𝐻  ×  𝐻 )  ⊆  dom   +ℎ   ↔  dom  (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  =  ( 𝐻  ×  𝐻 ) ) | 
						
							| 13 | 11 12 | mpbi | ⊢ dom  (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  =  ( 𝐻  ×  𝐻 ) | 
						
							| 14 | 5 13 | grporn | ⊢ 𝐻  =  ran  (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) | 
						
							| 15 |  | sh0 | ⊢ ( 𝐻  ∈   Sℋ   →  0ℎ  ∈  𝐻 ) | 
						
							| 16 | 2 15 | ax-mp | ⊢ 0ℎ  ∈  𝐻 | 
						
							| 17 |  | ovres | ⊢ ( ( 0ℎ  ∈  𝐻  ∧  0ℎ  ∈  𝐻 )  →  ( 0ℎ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 0ℎ )  =  ( 0ℎ  +ℎ  0ℎ ) ) | 
						
							| 18 | 16 16 17 | mp2an | ⊢ ( 0ℎ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 0ℎ )  =  ( 0ℎ  +ℎ  0ℎ ) | 
						
							| 19 |  | ax-hv0cl | ⊢ 0ℎ  ∈   ℋ | 
						
							| 20 | 19 | hvaddlidi | ⊢ ( 0ℎ  +ℎ  0ℎ )  =  0ℎ | 
						
							| 21 | 18 20 | eqtri | ⊢ ( 0ℎ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 0ℎ )  =  0ℎ | 
						
							| 22 |  | eqid | ⊢ ( GId ‘ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) )  =  ( GId ‘ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ) | 
						
							| 23 | 14 22 | grpoid | ⊢ ( ( (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  GrpOp  ∧  0ℎ  ∈  𝐻 )  →  ( 0ℎ  =  ( GId ‘ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) )  ↔  ( 0ℎ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 0ℎ )  =  0ℎ ) ) | 
						
							| 24 | 5 16 23 | mp2an | ⊢ ( 0ℎ  =  ( GId ‘ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) )  ↔  ( 0ℎ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 0ℎ )  =  0ℎ ) | 
						
							| 25 | 21 24 | mpbir | ⊢ 0ℎ  =  ( GId ‘ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ) | 
						
							| 26 |  | ax-hfvmul | ⊢  ·ℎ  : ( ℂ  ×   ℋ ) ⟶  ℋ | 
						
							| 27 |  | ffn | ⊢ (  ·ℎ  : ( ℂ  ×   ℋ ) ⟶  ℋ  →   ·ℎ   Fn  ( ℂ  ×   ℋ ) ) | 
						
							| 28 | 26 27 | ax-mp | ⊢  ·ℎ   Fn  ( ℂ  ×   ℋ ) | 
						
							| 29 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 30 |  | xpss12 | ⊢ ( ( ℂ  ⊆  ℂ  ∧  𝐻  ⊆   ℋ )  →  ( ℂ  ×  𝐻 )  ⊆  ( ℂ  ×   ℋ ) ) | 
						
							| 31 | 29 6 30 | mp2an | ⊢ ( ℂ  ×  𝐻 )  ⊆  ( ℂ  ×   ℋ ) | 
						
							| 32 |  | fnssres | ⊢ ( (  ·ℎ   Fn  ( ℂ  ×   ℋ )  ∧  ( ℂ  ×  𝐻 )  ⊆  ( ℂ  ×   ℋ ) )  →  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  Fn  ( ℂ  ×  𝐻 ) ) | 
						
							| 33 | 28 31 32 | mp2an | ⊢ (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  Fn  ( ℂ  ×  𝐻 ) | 
						
							| 34 |  | ovelrn | ⊢ ( (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  Fn  ( ℂ  ×  𝐻 )  →  ( 𝑧  ∈  ran  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  ↔  ∃ 𝑥  ∈  ℂ ∃ 𝑦  ∈  𝐻 𝑧  =  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 ) ) ) | 
						
							| 35 | 33 34 | ax-mp | ⊢ ( 𝑧  ∈  ran  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  ↔  ∃ 𝑥  ∈  ℂ ∃ 𝑦  ∈  𝐻 𝑧  =  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 ) ) | 
						
							| 36 |  | ovres | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝐻 )  →  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 )  =  ( 𝑥  ·ℎ  𝑦 ) ) | 
						
							| 37 |  | shmulcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝑥  ∈  ℂ  ∧  𝑦  ∈  𝐻 )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) | 
						
							| 38 | 2 37 | mp3an1 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝐻 )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) | 
						
							| 39 | 36 38 | eqeltrd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝐻 )  →  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 )  ∈  𝐻 ) | 
						
							| 40 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 )  →  ( 𝑧  ∈  𝐻  ↔  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 )  ∈  𝐻 ) ) | 
						
							| 41 | 39 40 | syl5ibrcom | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝐻 )  →  ( 𝑧  =  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 )  →  𝑧  ∈  𝐻 ) ) | 
						
							| 42 | 41 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  ℂ ∃ 𝑦  ∈  𝐻 𝑧  =  ( 𝑥 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑦 )  →  𝑧  ∈  𝐻 ) | 
						
							| 43 | 35 42 | sylbi | ⊢ ( 𝑧  ∈  ran  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  →  𝑧  ∈  𝐻 ) | 
						
							| 44 | 43 | ssriv | ⊢ ran  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  ⊆  𝐻 | 
						
							| 45 |  | df-f | ⊢ ( (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) : ( ℂ  ×  𝐻 ) ⟶ 𝐻  ↔  ( (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  Fn  ( ℂ  ×  𝐻 )  ∧  ran  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  ⊆  𝐻 ) ) | 
						
							| 46 | 33 44 45 | mpbir2an | ⊢ (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) : ( ℂ  ×  𝐻 ) ⟶ 𝐻 | 
						
							| 47 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 48 |  | ovres | ⊢ ( ( 1  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 1 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 1  ·ℎ  𝑥 ) ) | 
						
							| 49 | 47 48 | mpan | ⊢ ( 𝑥  ∈  𝐻  →  ( 1 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 1  ·ℎ  𝑥 ) ) | 
						
							| 50 | 2 | sheli | ⊢ ( 𝑥  ∈  𝐻  →  𝑥  ∈   ℋ ) | 
						
							| 51 |  | ax-hvmulid | ⊢ ( 𝑥  ∈   ℋ  →  ( 1  ·ℎ  𝑥 )  =  𝑥 ) | 
						
							| 52 | 50 51 | syl | ⊢ ( 𝑥  ∈  𝐻  →  ( 1  ·ℎ  𝑥 )  =  𝑥 ) | 
						
							| 53 | 49 52 | eqtrd | ⊢ ( 𝑥  ∈  𝐻  →  ( 1 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 54 |  | id | ⊢ ( 𝑦  ∈  ℂ  →  𝑦  ∈  ℂ ) | 
						
							| 55 | 2 | sheli | ⊢ ( 𝑧  ∈  𝐻  →  𝑧  ∈   ℋ ) | 
						
							| 56 |  | ax-hvdistr1 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑦  ·ℎ  ( 𝑥  +ℎ  𝑧 ) )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑦  ·ℎ  𝑧 ) ) ) | 
						
							| 57 | 54 50 55 56 | syl3an | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦  ·ℎ  ( 𝑥  +ℎ  𝑧 ) )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑦  ·ℎ  𝑧 ) ) ) | 
						
							| 58 |  | ovres | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑧 )  =  ( 𝑥  +ℎ  𝑧 ) ) | 
						
							| 59 | 58 | 3adant1 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑧 )  =  ( 𝑥  +ℎ  𝑧 ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑧 ) )  =  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑥  +ℎ  𝑧 ) ) ) | 
						
							| 61 |  | shaddcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑥  +ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 62 | 2 61 | mp3an1 | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑥  +ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 63 |  | ovres | ⊢ ( ( 𝑦  ∈  ℂ  ∧  ( 𝑥  +ℎ  𝑧 )  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑥  +ℎ  𝑧 ) )  =  ( 𝑦  ·ℎ  ( 𝑥  +ℎ  𝑧 ) ) ) | 
						
							| 64 | 62 63 | sylan2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  ( 𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 ) )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑥  +ℎ  𝑧 ) )  =  ( 𝑦  ·ℎ  ( 𝑥  +ℎ  𝑧 ) ) ) | 
						
							| 65 | 64 | 3impb | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑥  +ℎ  𝑧 ) )  =  ( 𝑦  ·ℎ  ( 𝑥  +ℎ  𝑧 ) ) ) | 
						
							| 66 | 60 65 | eqtrd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑧 ) )  =  ( 𝑦  ·ℎ  ( 𝑥  +ℎ  𝑧 ) ) ) | 
						
							| 67 |  | ovres | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 𝑦  ·ℎ  𝑥 ) ) | 
						
							| 68 | 67 | 3adant3 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 𝑦  ·ℎ  𝑥 ) ) | 
						
							| 69 |  | ovres | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑧 )  =  ( 𝑦  ·ℎ  𝑧 ) ) | 
						
							| 70 | 69 | 3adant2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑧 )  =  ( 𝑦  ·ℎ  𝑧 ) ) | 
						
							| 71 | 68 70 | oveq12d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑧 ) )  =  ( ( 𝑦  ·ℎ  𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑦  ·ℎ  𝑧 ) ) ) | 
						
							| 72 |  | shmulcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦  ·ℎ  𝑥 )  ∈  𝐻 ) | 
						
							| 73 | 2 72 | mp3an1 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦  ·ℎ  𝑥 )  ∈  𝐻 ) | 
						
							| 74 | 73 | 3adant3 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦  ·ℎ  𝑥 )  ∈  𝐻 ) | 
						
							| 75 |  | shmulcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦  ·ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 76 | 2 75 | mp3an1 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦  ·ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 77 | 76 | 3adant2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦  ·ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 78 | 74 77 | ovresd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( ( 𝑦  ·ℎ  𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑦  ·ℎ  𝑧 ) )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑦  ·ℎ  𝑧 ) ) ) | 
						
							| 79 | 71 78 | eqtrd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑧 ) )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑦  ·ℎ  𝑧 ) ) ) | 
						
							| 80 | 57 66 79 | 3eqtr4d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻  ∧  𝑧  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑧 ) )  =  ( ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑧 ) ) ) | 
						
							| 81 |  | ax-hvdistr2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑦  +  𝑧 )  ·ℎ  𝑥 )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 82 | 50 81 | syl3an3 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  +  𝑧 )  ·ℎ  𝑥 )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 83 |  | addcl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝑦  +  𝑧 )  ∈  ℂ ) | 
						
							| 84 |  | ovres | ⊢ ( ( ( 𝑦  +  𝑧 )  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  +  𝑧 ) (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( ( 𝑦  +  𝑧 )  ·ℎ  𝑥 ) ) | 
						
							| 85 | 83 84 | stoic3 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  +  𝑧 ) (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( ( 𝑦  +  𝑧 )  ·ℎ  𝑥 ) ) | 
						
							| 86 | 67 | 3adant2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 𝑦  ·ℎ  𝑥 ) ) | 
						
							| 87 |  | ovres | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 𝑧  ·ℎ  𝑥 ) ) | 
						
							| 88 | 87 | 3adant1 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 𝑧  ·ℎ  𝑥 ) ) | 
						
							| 89 | 86 88 | oveq12d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) )  =  ( ( 𝑦  ·ℎ  𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 90 | 73 | 3adant2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦  ·ℎ  𝑥 )  ∈  𝐻 ) | 
						
							| 91 |  | shmulcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑧  ·ℎ  𝑥 )  ∈  𝐻 ) | 
						
							| 92 | 2 91 | mp3an1 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑧  ·ℎ  𝑥 )  ∈  𝐻 ) | 
						
							| 93 | 92 | 3adant1 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑧  ·ℎ  𝑥 )  ∈  𝐻 ) | 
						
							| 94 | 90 93 | ovresd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  ·ℎ  𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑧  ·ℎ  𝑥 ) )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 95 | 89 94 | eqtrd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) )  =  ( ( 𝑦  ·ℎ  𝑥 )  +ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 96 | 82 85 95 | 3eqtr4d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  +  𝑧 ) (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) ) ) | 
						
							| 97 |  | ax-hvmulass | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑦  ·  𝑧 )  ·ℎ  𝑥 )  =  ( 𝑦  ·ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 98 | 50 97 | syl3an3 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  ·  𝑧 )  ·ℎ  𝑥 )  =  ( 𝑦  ·ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 99 |  | mulcl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝑦  ·  𝑧 )  ∈  ℂ ) | 
						
							| 100 |  | ovres | ⊢ ( ( ( 𝑦  ·  𝑧 )  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  ·  𝑧 ) (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( ( 𝑦  ·  𝑧 )  ·ℎ  𝑥 ) ) | 
						
							| 101 | 99 100 | stoic3 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  ·  𝑧 ) (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( ( 𝑦  ·  𝑧 )  ·ℎ  𝑥 ) ) | 
						
							| 102 | 88 | oveq2d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) )  =  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 103 |  | ovres | ⊢ ( ( 𝑦  ∈  ℂ  ∧  ( 𝑧  ·ℎ  𝑥 )  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑧  ·ℎ  𝑥 ) )  =  ( 𝑦  ·ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 104 | 92 103 | sylan2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  ( 𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 ) )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑧  ·ℎ  𝑥 ) )  =  ( 𝑦  ·ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 105 | 104 | 3impb | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑧  ·ℎ  𝑥 ) )  =  ( 𝑦  ·ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 106 | 102 105 | eqtrd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) )  =  ( 𝑦  ·ℎ  ( 𝑧  ·ℎ  𝑥 ) ) ) | 
						
							| 107 | 98 101 106 | 3eqtr4d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( 𝑦  ·  𝑧 ) (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 )  =  ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) ( 𝑧 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) ) ) | 
						
							| 108 |  | eqid | ⊢ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉  =  〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 | 
						
							| 109 | 3 13 46 53 80 96 107 108 | isvciOLD | ⊢ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉  ∈  CVecOLD | 
						
							| 110 |  | normf | ⊢ normℎ :  ℋ ⟶ ℝ | 
						
							| 111 |  | fssres | ⊢ ( ( normℎ :  ℋ ⟶ ℝ  ∧  𝐻  ⊆   ℋ )  →  ( normℎ  ↾  𝐻 ) : 𝐻 ⟶ ℝ ) | 
						
							| 112 | 110 6 111 | mp2an | ⊢ ( normℎ  ↾  𝐻 ) : 𝐻 ⟶ ℝ | 
						
							| 113 |  | fvres | ⊢ ( 𝑥  ∈  𝐻  →  ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 )  =  ( normℎ ‘ 𝑥 ) ) | 
						
							| 114 | 113 | eqeq1d | ⊢ ( 𝑥  ∈  𝐻  →  ( ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 )  =  0  ↔  ( normℎ ‘ 𝑥 )  =  0 ) ) | 
						
							| 115 |  | norm-i | ⊢ ( 𝑥  ∈   ℋ  →  ( ( normℎ ‘ 𝑥 )  =  0  ↔  𝑥  =  0ℎ ) ) | 
						
							| 116 | 50 115 | syl | ⊢ ( 𝑥  ∈  𝐻  →  ( ( normℎ ‘ 𝑥 )  =  0  ↔  𝑥  =  0ℎ ) ) | 
						
							| 117 | 114 116 | bitrd | ⊢ ( 𝑥  ∈  𝐻  →  ( ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 )  =  0  ↔  𝑥  =  0ℎ ) ) | 
						
							| 118 | 117 | biimpa | ⊢ ( ( 𝑥  ∈  𝐻  ∧  ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 )  =  0 )  →  𝑥  =  0ℎ ) | 
						
							| 119 |  | norm-iii | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈   ℋ )  →  ( normℎ ‘ ( 𝑦  ·ℎ  𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 120 | 50 119 | sylan2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( normℎ ‘ ( 𝑦  ·ℎ  𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 121 | 67 | fveq2d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) )  =  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑦  ·ℎ  𝑥 ) ) ) | 
						
							| 122 |  | fvres | ⊢ ( ( 𝑦  ·ℎ  𝑥 )  ∈  𝐻  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑦  ·ℎ  𝑥 ) )  =  ( normℎ ‘ ( 𝑦  ·ℎ  𝑥 ) ) ) | 
						
							| 123 | 73 122 | syl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑦  ·ℎ  𝑥 ) )  =  ( normℎ ‘ ( 𝑦  ·ℎ  𝑥 ) ) ) | 
						
							| 124 | 121 123 | eqtrd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) )  =  ( normℎ ‘ ( 𝑦  ·ℎ  𝑥 ) ) ) | 
						
							| 125 | 113 | adantl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 )  =  ( normℎ ‘ 𝑥 ) ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( abs ‘ 𝑦 )  ·  ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 127 | 120 124 126 | 3eqtr4d | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑦 (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 ) ) ) | 
						
							| 128 | 2 | sheli | ⊢ ( 𝑦  ∈  𝐻  →  𝑦  ∈   ℋ ) | 
						
							| 129 |  | norm-ii | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  ≤  ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 130 | 50 128 129 | syl2an | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  ≤  ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 131 |  | ovres | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑦 )  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 132 | 131 | fveq2d | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑦 ) )  =  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 133 |  | shaddcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( 𝑥  +ℎ  𝑦 )  ∈  𝐻 ) | 
						
							| 134 | 2 133 | mp3an1 | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( 𝑥  +ℎ  𝑦 )  ∈  𝐻 ) | 
						
							| 135 |  | fvres | ⊢ ( ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑥  +ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 136 | 134 135 | syl | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑥  +ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 137 | 132 136 | eqtrd | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑦 ) )  =  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 138 |  | fvres | ⊢ ( 𝑦  ∈  𝐻  →  ( ( normℎ  ↾  𝐻 ) ‘ 𝑦 )  =  ( normℎ ‘ 𝑦 ) ) | 
						
							| 139 | 113 138 | oveqan12d | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 )  +  ( ( normℎ  ↾  𝐻 ) ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 140 | 130 137 139 | 3brtr4d | ⊢ ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝑥 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝑦 ) )  ≤  ( ( ( normℎ  ↾  𝐻 ) ‘ 𝑥 )  +  ( ( normℎ  ↾  𝐻 ) ‘ 𝑦 ) ) ) | 
						
							| 141 | 14 25 109 112 118 127 140 1 | isnvi | ⊢ 𝑊  ∈  NrmCVec |