Metamath Proof Explorer


Theorem hhssnvt

Description: Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhssnvt.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
Assertion hhssnvt ( 𝐻S𝑊 ∈ NrmCVec )

Proof

Step Hyp Ref Expression
1 hhssnvt.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 xpeq1 ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( 𝐻 × 𝐻 ) = ( if ( 𝐻S , 𝐻 , 0 ) × 𝐻 ) )
3 xpeq2 ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( if ( 𝐻S , 𝐻 , 0 ) × 𝐻 ) = ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) )
4 2 3 eqtrd ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( 𝐻 × 𝐻 ) = ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) )
5 4 reseq2d ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( + ↾ ( 𝐻 × 𝐻 ) ) = ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) )
6 xpeq2 ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( ℂ × 𝐻 ) = ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) )
7 6 reseq2d ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( · ↾ ( ℂ × 𝐻 ) ) = ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) )
8 5 7 opeq12d ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ = ⟨ ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) , ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) ⟩ )
9 reseq2 ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( norm𝐻 ) = ( norm ↾ if ( 𝐻S , 𝐻 , 0 ) ) )
10 8 9 opeq12d ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ = ⟨ ⟨ ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) , ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) ⟩ , ( norm ↾ if ( 𝐻S , 𝐻 , 0 ) ) ⟩ )
11 1 10 syl5eq ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → 𝑊 = ⟨ ⟨ ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) , ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) ⟩ , ( norm ↾ if ( 𝐻S , 𝐻 , 0 ) ) ⟩ )
12 11 eleq1d ( 𝐻 = if ( 𝐻S , 𝐻 , 0 ) → ( 𝑊 ∈ NrmCVec ↔ ⟨ ⟨ ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) , ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) ⟩ , ( norm ↾ if ( 𝐻S , 𝐻 , 0 ) ) ⟩ ∈ NrmCVec ) )
13 eqid ⟨ ⟨ ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) , ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) ⟩ , ( norm ↾ if ( 𝐻S , 𝐻 , 0 ) ) ⟩ = ⟨ ⟨ ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) , ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) ⟩ , ( norm ↾ if ( 𝐻S , 𝐻 , 0 ) ) ⟩
14 h0elsh 0S
15 14 elimel if ( 𝐻S , 𝐻 , 0 ) ∈ S
16 13 15 hhssnv ⟨ ⟨ ( + ↾ ( if ( 𝐻S , 𝐻 , 0 ) × if ( 𝐻S , 𝐻 , 0 ) ) ) , ( · ↾ ( ℂ × if ( 𝐻S , 𝐻 , 0 ) ) ) ⟩ , ( norm ↾ if ( 𝐻S , 𝐻 , 0 ) ) ⟩ ∈ NrmCVec
17 12 16 dedth ( 𝐻S𝑊 ∈ NrmCVec )