| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhss.1 | ⊢ 𝑊  =  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 | 
						
							| 2 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑊 )  =  (  ·𝑠OLD  ‘ 𝑊 ) | 
						
							| 3 | 2 | smfval | ⊢ (  ·𝑠OLD  ‘ 𝑊 )  =  ( 2nd  ‘ ( 1st  ‘ 𝑊 ) ) | 
						
							| 4 | 1 | fveq2i | ⊢ ( 1st  ‘ 𝑊 )  =  ( 1st  ‘ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 ) | 
						
							| 5 |  | opex | ⊢ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉  ∈  V | 
						
							| 6 |  | normf | ⊢ normℎ :  ℋ ⟶ ℝ | 
						
							| 7 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 8 |  | fex | ⊢ ( ( normℎ :  ℋ ⟶ ℝ  ∧   ℋ  ∈  V )  →  normℎ  ∈  V ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ normℎ  ∈  V | 
						
							| 10 | 9 | resex | ⊢ ( normℎ  ↾  𝐻 )  ∈  V | 
						
							| 11 | 5 10 | op1st | ⊢ ( 1st  ‘ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 )  =  〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 | 
						
							| 12 | 4 11 | eqtri | ⊢ ( 1st  ‘ 𝑊 )  =  〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 | 
						
							| 13 | 12 | fveq2i | ⊢ ( 2nd  ‘ ( 1st  ‘ 𝑊 ) )  =  ( 2nd  ‘ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ) | 
						
							| 14 |  | hilablo | ⊢  +ℎ   ∈  AbelOp | 
						
							| 15 |  | resexg | ⊢ (  +ℎ   ∈  AbelOp  →  (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  V ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  V | 
						
							| 17 |  | hvmulex | ⊢  ·ℎ   ∈  V | 
						
							| 18 | 17 | resex | ⊢ (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  ∈  V | 
						
							| 19 | 16 18 | op2nd | ⊢ ( 2nd  ‘ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 )  =  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) | 
						
							| 20 | 3 13 19 | 3eqtrri | ⊢ (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  =  (  ·𝑠OLD  ‘ 𝑊 ) |