| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hhss.1 | 
							⊢ 𝑊  =  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ (  +𝑣  ‘ 𝑊 )  =  (  +𝑣  ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								2
							 | 
							vafval | 
							⊢ (  +𝑣  ‘ 𝑊 )  =  ( 1st  ‘ ( 1st  ‘ 𝑊 ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							fveq2i | 
							⊢ ( 1st  ‘ 𝑊 )  =  ( 1st  ‘ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 )  | 
						
						
							| 5 | 
							
								
							 | 
							opex | 
							⊢ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉  ∈  V  | 
						
						
							| 6 | 
							
								
							 | 
							normf | 
							⊢ normℎ :  ℋ ⟶ ℝ  | 
						
						
							| 7 | 
							
								
							 | 
							ax-hilex | 
							⊢  ℋ  ∈  V  | 
						
						
							| 8 | 
							
								
							 | 
							fex | 
							⊢ ( ( normℎ :  ℋ ⟶ ℝ  ∧   ℋ  ∈  V )  →  normℎ  ∈  V )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							mp2an | 
							⊢ normℎ  ∈  V  | 
						
						
							| 10 | 
							
								9
							 | 
							resex | 
							⊢ ( normℎ  ↾  𝐻 )  ∈  V  | 
						
						
							| 11 | 
							
								5 10
							 | 
							op1st | 
							⊢ ( 1st  ‘ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 )  =  〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉  | 
						
						
							| 12 | 
							
								4 11
							 | 
							eqtri | 
							⊢ ( 1st  ‘ 𝑊 )  =  〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉  | 
						
						
							| 13 | 
							
								12
							 | 
							fveq2i | 
							⊢ ( 1st  ‘ ( 1st  ‘ 𝑊 ) )  =  ( 1st  ‘ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 )  | 
						
						
							| 14 | 
							
								
							 | 
							hilablo | 
							⊢  +ℎ   ∈  AbelOp  | 
						
						
							| 15 | 
							
								
							 | 
							resexg | 
							⊢ (  +ℎ   ∈  AbelOp  →  (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  V )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							⊢ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  ∈  V  | 
						
						
							| 17 | 
							
								
							 | 
							hvmulex | 
							⊢  ·ℎ   ∈  V  | 
						
						
							| 18 | 
							
								17
							 | 
							resex | 
							⊢ (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) )  ∈  V  | 
						
						
							| 19 | 
							
								16 18
							 | 
							op1st | 
							⊢ ( 1st  ‘ 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 )  =  (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  | 
						
						
							| 20 | 
							
								3 13 19
							 | 
							3eqtrri | 
							⊢ (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) )  =  (  +𝑣  ‘ 𝑊 )  |