Metamath Proof Explorer


Theorem hhssvs

Description: The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsssh2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
hhssba.2 𝐻S
Assertion hhssvs ( − ↾ ( 𝐻 × 𝐻 ) ) = ( −𝑣𝑊 )

Proof

Step Hyp Ref Expression
1 hhsssh2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 hhssba.2 𝐻S
3 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
4 3 hhnv ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec
5 3 1 hhsst ( 𝐻S𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) )
6 2 5 ax-mp 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
7 1 2 hhssba 𝐻 = ( BaseSet ‘ 𝑊 )
8 3 hhvs = ( −𝑣 ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
9 eqid ( −𝑣𝑊 ) = ( −𝑣𝑊 )
10 eqid ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
11 7 8 9 10 sspm ( ( ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) → ( −𝑣𝑊 ) = ( − ↾ ( 𝐻 × 𝐻 ) ) )
12 4 6 11 mp2an ( −𝑣𝑊 ) = ( − ↾ ( 𝐻 × 𝐻 ) )
13 12 eqcomi ( − ↾ ( 𝐻 × 𝐻 ) ) = ( −𝑣𝑊 )