Metamath Proof Explorer


Theorem hhva

Description: The group (addition) operation of Hilbert space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
Assertion hhva + = ( +𝑣𝑈 )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 1 hhnv 𝑈 ∈ NrmCVec
3 1 2 h2hva + = ( +𝑣𝑈 )