Metamath Proof Explorer


Theorem hhvs

Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 13-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
Assertion hhvs = ( −𝑣𝑈 )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 1 hhnv 𝑈 ∈ NrmCVec
3 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
4 1 2 3 h2hvs = ( −𝑣𝑈 )