| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 2 |
|
ax-hvmul0 |
⊢ ( 0ℎ ∈ ℋ → ( 0 ·ℎ 0ℎ ) = 0ℎ ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 0 ·ℎ 0ℎ ) = 0ℎ |
| 4 |
3
|
oveq1i |
⊢ ( ( 0 ·ℎ 0ℎ ) ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) |
| 5 |
|
0cn |
⊢ 0 ∈ ℂ |
| 6 |
|
ax-his3 |
⊢ ( ( 0 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 0 ·ℎ 0ℎ ) ·ih 𝐴 ) = ( 0 · ( 0ℎ ·ih 𝐴 ) ) ) |
| 7 |
5 1 6
|
mp3an12 |
⊢ ( 𝐴 ∈ ℋ → ( ( 0 ·ℎ 0ℎ ) ·ih 𝐴 ) = ( 0 · ( 0ℎ ·ih 𝐴 ) ) ) |
| 8 |
4 7
|
eqtr3id |
⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = ( 0 · ( 0ℎ ·ih 𝐴 ) ) ) |
| 9 |
|
hicl |
⊢ ( ( 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 0ℎ ·ih 𝐴 ) ∈ ℂ ) |
| 10 |
1 9
|
mpan |
⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) ∈ ℂ ) |
| 11 |
10
|
mul02d |
⊢ ( 𝐴 ∈ ℋ → ( 0 · ( 0ℎ ·ih 𝐴 ) ) = 0 ) |
| 12 |
8 11
|
eqtrd |
⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) |