Description: Inner product with the 0 vector. (Contributed by NM, 13-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hi02 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 0ℎ ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝐴 ·ih 0ℎ ) = ( ∗ ‘ ( 0ℎ ·ih 𝐴 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 0ℎ ) = ( ∗ ‘ ( 0ℎ ·ih 𝐴 ) ) ) | 
| 4 | hi01 | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝐴 ∈ ℋ → ( ∗ ‘ ( 0ℎ ·ih 𝐴 ) ) = ( ∗ ‘ 0 ) ) | 
| 6 | cj0 | ⊢ ( ∗ ‘ 0 ) = 0 | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴 ∈ ℋ → ( ∗ ‘ ( 0ℎ ·ih 𝐴 ) ) = 0 ) | 
| 8 | 3 7 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 0ℎ ) = 0 ) |