Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih 𝐴 ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝐴 ) = 0 ) ) |
3 |
2
|
rspcv |
⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝐴 ) = 0 ) ) |
4 |
|
his6 |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |
5 |
3 4
|
sylibd |
⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = 0 → 𝐴 = 0ℎ ) ) |
6 |
|
oveq1 |
⊢ ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝑥 ) = ( 0ℎ ·ih 𝑥 ) ) |
7 |
|
hi01 |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ ·ih 𝑥 ) = 0 ) |
8 |
6 7
|
sylan9eq |
⊢ ( ( 𝐴 = 0ℎ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ih 𝑥 ) = 0 ) |
9 |
8
|
ex |
⊢ ( 𝐴 = 0ℎ → ( 𝑥 ∈ ℋ → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
10 |
9
|
a1i |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ( 𝑥 ∈ ℋ → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
11 |
10
|
ralrimdv |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
12 |
5 11
|
impbid |
⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = 0 ↔ 𝐴 = 0ℎ ) ) |