| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ·ih  𝑥 )  =  ( 𝐴  ·ih  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝐴  ·ih  𝑥 )  =  0  ↔  ( 𝐴  ·ih  𝐴 )  =  0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rspcv | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0  →  ( 𝐴  ·ih  𝐴 )  =  0 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							his6 | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝐴  ·ih  𝐴 )  =  0  ↔  𝐴  =  0ℎ ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylibd | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0  →  𝐴  =  0ℎ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =  0ℎ  →  ( 𝐴  ·ih  𝑥 )  =  ( 0ℎ  ·ih  𝑥 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							hi01 | 
							⊢ ( 𝑥  ∈   ℋ  →  ( 0ℎ  ·ih  𝑥 )  =  0 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan9eq | 
							⊢ ( ( 𝐴  =  0ℎ  ∧  𝑥  ∈   ℋ )  →  ( 𝐴  ·ih  𝑥 )  =  0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							⊢ ( 𝐴  =  0ℎ  →  ( 𝑥  ∈   ℋ  →  ( 𝐴  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  =  0ℎ  →  ( 𝑥  ∈   ℋ  →  ( 𝐴  ·ih  𝑥 )  =  0 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ralrimdv | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  =  0ℎ  →  ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							impbid | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  0  ↔  𝐴  =  0ℎ ) )  |