Step |
Hyp |
Ref |
Expression |
1 |
|
hvsubcl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 −ℎ 𝐵 ) → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 −ℎ 𝐵 ) → ( 𝐵 ·ih 𝑥 ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐴 −ℎ 𝐵 ) → ( ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
5 |
4
|
rspcv |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) → ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
6 |
1 5
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) → ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
7 |
|
hi2eq |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
8 |
6 7
|
sylibd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) → 𝐴 = 𝐵 ) ) |
9 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) |
10 |
9
|
ralrimivw |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) |
11 |
8 10
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ 𝐴 = 𝐵 ) ) |