Metamath Proof Explorer


Theorem hial2eq2

Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion hial2eq2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ax-his1 ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) )
2 ax-his1 ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐵 ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) )
3 1 2 eqeqan12d ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ) )
4 hicl ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ )
5 4 ancoms ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ )
6 hicl ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih 𝐵 ) ∈ ℂ )
7 6 ancoms ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐵 ) ∈ ℂ )
8 cj11 ( ( ( 𝑥 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝑥 ·ih 𝐵 ) ∈ ℂ ) → ( ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ↔ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ) )
9 5 7 8 syl2an ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ↔ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ) )
10 3 9 bitr2d ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) )
11 10 anandirs ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) )
12 11 ralbidva ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) )
13 hial2eq ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ 𝐴 = 𝐵 ) )
14 12 13 bitrd ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ 𝐴 = 𝐵 ) )