| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-his1 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝐴  ·ih  𝑥 )  =  ( ∗ ‘ ( 𝑥  ·ih  𝐴 ) ) ) | 
						
							| 2 |  | ax-his1 | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝐵  ·ih  𝑥 )  =  ( ∗ ‘ ( 𝑥  ·ih  𝐵 ) ) ) | 
						
							| 3 | 1 2 | eqeqan12d | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝐵  ∈   ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( ( 𝐴  ·ih  𝑥 )  =  ( 𝐵  ·ih  𝑥 )  ↔  ( ∗ ‘ ( 𝑥  ·ih  𝐴 ) )  =  ( ∗ ‘ ( 𝑥  ·ih  𝐵 ) ) ) ) | 
						
							| 4 |  | hicl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝑥  ·ih  𝐴 )  ∈  ℂ ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑥  ·ih  𝐴 )  ∈  ℂ ) | 
						
							| 6 |  | hicl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝑥  ·ih  𝐵 )  ∈  ℂ ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑥  ·ih  𝐵 )  ∈  ℂ ) | 
						
							| 8 |  | cj11 | ⊢ ( ( ( 𝑥  ·ih  𝐴 )  ∈  ℂ  ∧  ( 𝑥  ·ih  𝐵 )  ∈  ℂ )  →  ( ( ∗ ‘ ( 𝑥  ·ih  𝐴 ) )  =  ( ∗ ‘ ( 𝑥  ·ih  𝐵 ) )  ↔  ( 𝑥  ·ih  𝐴 )  =  ( 𝑥  ·ih  𝐵 ) ) ) | 
						
							| 9 | 5 7 8 | syl2an | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝐵  ∈   ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( ( ∗ ‘ ( 𝑥  ·ih  𝐴 ) )  =  ( ∗ ‘ ( 𝑥  ·ih  𝐵 ) )  ↔  ( 𝑥  ·ih  𝐴 )  =  ( 𝑥  ·ih  𝐵 ) ) ) | 
						
							| 10 | 3 9 | bitr2d | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝐵  ∈   ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( ( 𝑥  ·ih  𝐴 )  =  ( 𝑥  ·ih  𝐵 )  ↔  ( 𝐴  ·ih  𝑥 )  =  ( 𝐵  ·ih  𝑥 ) ) ) | 
						
							| 11 | 10 | anandirs | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑥  ·ih  𝐴 )  =  ( 𝑥  ·ih  𝐵 )  ↔  ( 𝐴  ·ih  𝑥 )  =  ( 𝐵  ·ih  𝑥 ) ) ) | 
						
							| 12 | 11 | ralbidva | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  𝐴 )  =  ( 𝑥  ·ih  𝐵 )  ↔  ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  ( 𝐵  ·ih  𝑥 ) ) ) | 
						
							| 13 |  | hial2eq | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ∀ 𝑥  ∈   ℋ ( 𝐴  ·ih  𝑥 )  =  ( 𝐵  ·ih  𝑥 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 14 | 12 13 | bitrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  𝐴 )  =  ( 𝑥  ·ih  𝐵 )  ↔  𝐴  =  𝐵 ) ) |