Step |
Hyp |
Ref |
Expression |
1 |
|
ax-his1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) ) |
2 |
|
ax-his1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐵 ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ) |
3 |
1 2
|
eqeqan12d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ) ) |
4 |
|
hicl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) |
6 |
|
hicl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih 𝐵 ) ∈ ℂ ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐵 ) ∈ ℂ ) |
8 |
|
cj11 |
⊢ ( ( ( 𝑥 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝑥 ·ih 𝐵 ) ∈ ℂ ) → ( ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ↔ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ) ) |
9 |
5 7 8
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ↔ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ) ) |
10 |
3 9
|
bitr2d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) ) |
11 |
10
|
anandirs |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) ) |
12 |
11
|
ralbidva |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) ) |
13 |
|
hial2eq |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ 𝐴 = 𝐵 ) ) |
14 |
12 13
|
bitrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |