| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 2 |  | ax-his2 | ⊢ ( ( ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ )  →  ( ( ( 𝐴  ·ℎ  𝐵 )  +ℎ  𝐶 )  ·ih  𝐷 )  =  ( ( ( 𝐴  ·ℎ  𝐵 )  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 3 | 2 | 3expb | ⊢ ( ( ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( ( 𝐴  ·ℎ  𝐵 )  +ℎ  𝐶 )  ·ih  𝐷 )  =  ( ( ( 𝐴  ·ℎ  𝐵 )  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 4 | 1 3 | sylan | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( ( 𝐴  ·ℎ  𝐵 )  +ℎ  𝐶 )  ·ih  𝐷 )  =  ( ( ( 𝐴  ·ℎ  𝐵 )  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 5 |  | ax-his3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐷  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  𝐵 )  ·ih  𝐷 )  =  ( 𝐴  ·  ( 𝐵  ·ih  𝐷 ) ) ) | 
						
							| 6 | 5 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  𝐷  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  𝐵 )  ·ih  𝐷 )  =  ( 𝐴  ·  ( 𝐵  ·ih  𝐷 ) ) ) | 
						
							| 7 | 6 | adantrl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( 𝐴  ·ℎ  𝐵 )  ·ih  𝐷 )  =  ( 𝐴  ·  ( 𝐵  ·ih  𝐷 ) ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( ( 𝐴  ·ℎ  𝐵 )  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐷 ) )  =  ( ( 𝐴  ·  ( 𝐵  ·ih  𝐷 ) )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 9 | 4 8 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( ( 𝐴  ·ℎ  𝐵 )  +ℎ  𝐶 )  ·ih  𝐷 )  =  ( ( 𝐴  ·  ( 𝐵  ·ih  𝐷 ) )  +  ( 𝐶  ·ih  𝐷 ) ) ) |