Metamath Proof Explorer


Theorem hiassdi

Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hiassdi ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) ·ih 𝐷 ) = ( ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) + ( 𝐶 ·ih 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 hvmulcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · 𝐵 ) ∈ ℋ )
2 ax-his2 ( ( ( 𝐴 · 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) ·ih 𝐷 ) = ( ( ( 𝐴 · 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) )
3 2 3expb ( ( ( 𝐴 · 𝐵 ) ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) ·ih 𝐷 ) = ( ( ( 𝐴 · 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) )
4 1 3 sylan ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) ·ih 𝐷 ) = ( ( ( 𝐴 · 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) )
5 ax-his3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ih 𝐷 ) = ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) )
6 5 3expa ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ih 𝐷 ) = ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) )
7 6 adantrl ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 · 𝐵 ) ·ih 𝐷 ) = ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) )
8 7 oveq1d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 · 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) = ( ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) + ( 𝐶 ·ih 𝐷 ) ) )
9 4 8 eqtrd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) ·ih 𝐷 ) = ( ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) + ( 𝐶 ·ih 𝐷 ) ) )