Metamath Proof Explorer


Theorem hicl

Description: Closure of inner product. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion hicl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 ax-hfi ·ih : ( ℋ × ℋ ) ⟶ ℂ
2 1 fovcl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ )