Description: Closure of inner product. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hicl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfi | ⊢ ·ih : ( ℋ × ℋ ) ⟶ ℂ | |
2 | 1 | fovcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) |