Metamath Proof Explorer
Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hicl.1 |
⊢ 𝐴 ∈ ℋ |
|
|
hicl.2 |
⊢ 𝐵 ∈ ℋ |
|
Assertion |
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hicl.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hicl.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
hicl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |