Metamath Proof Explorer


Theorem hiidge0

Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion hiidge0 ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) )

Proof

Step Hyp Ref Expression
1 pm2.1 ( ¬ 𝐴 = 0𝐴 = 0 )
2 df-ne ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 )
3 ax-his4 ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )
4 2 3 sylan2br ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )
5 4 ex ( 𝐴 ∈ ℋ → ( ¬ 𝐴 = 0 → 0 < ( 𝐴 ·ih 𝐴 ) ) )
6 oveq1 ( 𝐴 = 0 → ( 𝐴 ·ih 𝐴 ) = ( 0 ·ih 𝐴 ) )
7 hi01 ( 𝐴 ∈ ℋ → ( 0 ·ih 𝐴 ) = 0 )
8 6 7 sylan9eqr ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0 ) → ( 𝐴 ·ih 𝐴 ) = 0 )
9 8 eqcomd ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0 ) → 0 = ( 𝐴 ·ih 𝐴 ) )
10 9 ex ( 𝐴 ∈ ℋ → ( 𝐴 = 0 → 0 = ( 𝐴 ·ih 𝐴 ) ) )
11 5 10 orim12d ( 𝐴 ∈ ℋ → ( ( ¬ 𝐴 = 0𝐴 = 0 ) → ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) )
12 1 11 mpi ( 𝐴 ∈ ℋ → ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) )
13 0re 0 ∈ ℝ
14 hiidrcl ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ )
15 leloe ( ( 0 ∈ ℝ ∧ ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( 𝐴 ·ih 𝐴 ) ↔ ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) )
16 13 14 15 sylancr ( 𝐴 ∈ ℋ → ( 0 ≤ ( 𝐴 ·ih 𝐴 ) ↔ ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) )
17 12 16 mpbird ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) )