Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.1 |
⊢ ( ¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ ) |
2 |
|
df-ne |
⊢ ( 𝐴 ≠ 0ℎ ↔ ¬ 𝐴 = 0ℎ ) |
3 |
|
ax-his4 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
4 |
2 3
|
sylan2br |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
5 |
4
|
ex |
⊢ ( 𝐴 ∈ ℋ → ( ¬ 𝐴 = 0ℎ → 0 < ( 𝐴 ·ih 𝐴 ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) ) |
7 |
|
hi01 |
⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) |
8 |
6 7
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( 𝐴 ·ih 𝐴 ) = 0 ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → 0 = ( 𝐴 ·ih 𝐴 ) ) |
10 |
9
|
ex |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → 0 = ( 𝐴 ·ih 𝐴 ) ) ) |
11 |
5 10
|
orim12d |
⊢ ( 𝐴 ∈ ℋ → ( ( ¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ ) → ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) ) |
12 |
1 11
|
mpi |
⊢ ( 𝐴 ∈ ℋ → ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
hiidrcl |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
15 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( 𝐴 ·ih 𝐴 ) ↔ ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) ) |
16 |
13 14 15
|
sylancr |
⊢ ( 𝐴 ∈ ℋ → ( 0 ≤ ( 𝐴 ·ih 𝐴 ) ↔ ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) ) |
17 |
12 16
|
mpbird |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |