Description: Real closure of inner product with self. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝐴 ·ih 𝐴 ) = ( 𝐴 ·ih 𝐴 ) | |
2 | hire | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐴 ) ∈ ℝ ↔ ( 𝐴 ·ih 𝐴 ) = ( 𝐴 ·ih 𝐴 ) ) ) | |
3 | 1 2 | mpbiri | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
4 | 3 | anidms | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |