Metamath Proof Explorer


Theorem hilablo

Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilablo + ∈ AbelOp

Proof

Step Hyp Ref Expression
1 ax-hilex ℋ ∈ V
2 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
3 ax-hvass ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
4 ax-hv0cl 0 ∈ ℋ
5 hvaddid2 ( 𝑥 ∈ ℋ → ( 0 + 𝑥 ) = 𝑥 )
6 neg1cn - 1 ∈ ℂ
7 hvmulcl ( ( - 1 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( - 1 · 𝑥 ) ∈ ℋ )
8 6 7 mpan ( 𝑥 ∈ ℋ → ( - 1 · 𝑥 ) ∈ ℋ )
9 ax-hvcom ( ( ( - 1 · 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( - 1 · 𝑥 ) + 𝑥 ) = ( 𝑥 + ( - 1 · 𝑥 ) ) )
10 8 9 mpancom ( 𝑥 ∈ ℋ → ( ( - 1 · 𝑥 ) + 𝑥 ) = ( 𝑥 + ( - 1 · 𝑥 ) ) )
11 hvnegid ( 𝑥 ∈ ℋ → ( 𝑥 + ( - 1 · 𝑥 ) ) = 0 )
12 10 11 eqtrd ( 𝑥 ∈ ℋ → ( ( - 1 · 𝑥 ) + 𝑥 ) = 0 )
13 1 2 3 4 5 8 12 isgrpoi + ∈ GrpOp
14 2 fdmi dom + = ( ℋ × ℋ )
15 ax-hvcom ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
16 13 14 15 isabloi + ∈ AbelOp