Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
⊢ ℋ ∈ V |
2 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
3 |
|
ax-hvass |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
4 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
5 |
|
hvaddid2 |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( - 1 ·ℎ 𝑥 ) ∈ ℋ ) |
8 |
6 7
|
mpan |
⊢ ( 𝑥 ∈ ℋ → ( - 1 ·ℎ 𝑥 ) ∈ ℋ ) |
9 |
|
ax-hvcom |
⊢ ( ( ( - 1 ·ℎ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( - 1 ·ℎ 𝑥 ) +ℎ 𝑥 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑥 ) ) ) |
10 |
8 9
|
mpancom |
⊢ ( 𝑥 ∈ ℋ → ( ( - 1 ·ℎ 𝑥 ) +ℎ 𝑥 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑥 ) ) ) |
11 |
|
hvnegid |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ ( - 1 ·ℎ 𝑥 ) ) = 0ℎ ) |
12 |
10 11
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( - 1 ·ℎ 𝑥 ) +ℎ 𝑥 ) = 0ℎ ) |
13 |
1 2 3 4 5 8 12
|
isgrpoi |
⊢ +ℎ ∈ GrpOp |
14 |
2
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
15 |
|
ax-hvcom |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
16 |
13 14 15
|
isabloi |
⊢ +ℎ ∈ AbelOp |