Metamath Proof Explorer


Theorem hilcompl

Description: Lemma used for derivation of the completeness axiom ax-hcompl from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex ; the 6th would be satisfied by eqid ; the 7th by a given fixed Hilbert space; and the last by Theorem hlcompl . (Contributed by NM, 13-Sep-2007) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hilcompl.1 ℋ = ( BaseSet ‘ 𝑈 )
hilcompl.2 + = ( +𝑣𝑈 )
hilcompl.3 · = ( ·𝑠OLD𝑈 )
hilcompl.4 ·ih = ( ·𝑖OLD𝑈 )
hilcompl.5 𝐷 = ( IndMet ‘ 𝑈 )
hilcompl.6 𝐽 = ( MetOpen ‘ 𝐷 )
hilcompl.7 𝑈 ∈ CHilOLD
hilcompl.8 ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 )
Assertion hilcompl ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹𝑣 𝑥 )

Proof

Step Hyp Ref Expression
1 hilcompl.1 ℋ = ( BaseSet ‘ 𝑈 )
2 hilcompl.2 + = ( +𝑣𝑈 )
3 hilcompl.3 · = ( ·𝑠OLD𝑈 )
4 hilcompl.4 ·ih = ( ·𝑖OLD𝑈 )
5 hilcompl.5 𝐷 = ( IndMet ‘ 𝑈 )
6 hilcompl.6 𝐽 = ( MetOpen ‘ 𝐷 )
7 hilcompl.7 𝑈 ∈ CHilOLD
8 hilcompl.8 ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 )
9 7 hlnvi 𝑈 ∈ NrmCVec
10 1 2 3 4 9 hilhhi 𝑈 = ⟨ ⟨ + , · ⟩ , norm
11 10 5 6 8 hhcmpl ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹𝑣 𝑥 )