Description: Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hilhh.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
hilhh.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | ||
hilhh.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | ||
hilhh.5 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | ||
hilhh.9 | ⊢ 𝑈 ∈ NrmCVec | ||
Assertion | hilhhi | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilhh.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
2 | hilhh.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | |
3 | hilhh.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | |
4 | hilhh.5 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | |
5 | hilhh.9 | ⊢ 𝑈 ∈ NrmCVec | |
6 | 1 4 5 | hilnormi | ⊢ normℎ = ( normCV ‘ 𝑈 ) |
7 | 2 3 6 | nvop | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
8 | 5 7 | ax-mp | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |