Metamath Proof Explorer


Theorem hilhhi

Description: Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hilhh.1 ℋ = ( BaseSet ‘ 𝑈 )
hilhh.2 + = ( +𝑣𝑈 )
hilhh.3 · = ( ·𝑠OLD𝑈 )
hilhh.5 ·ih = ( ·𝑖OLD𝑈 )
hilhh.9 𝑈 ∈ NrmCVec
Assertion hilhhi 𝑈 = ⟨ ⟨ + , · ⟩ , norm

Proof

Step Hyp Ref Expression
1 hilhh.1 ℋ = ( BaseSet ‘ 𝑈 )
2 hilhh.2 + = ( +𝑣𝑈 )
3 hilhh.3 · = ( ·𝑠OLD𝑈 )
4 hilhh.5 ·ih = ( ·𝑖OLD𝑈 )
5 hilhh.9 𝑈 ∈ NrmCVec
6 1 4 5 hilnormi norm = ( normCV𝑈 )
7 2 3 6 nvop ( 𝑈 ∈ NrmCVec → 𝑈 = ⟨ ⟨ + , · ⟩ , norm ⟩ )
8 5 7 ax-mp 𝑈 = ⟨ ⟨ + , · ⟩ , norm