Metamath Proof Explorer


Theorem hilhl

Description: The Hilbert space of the Hilbert Space Explorer is a complex Hilbert space. (Contributed by Steve Rodriguez, 29-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilhl ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ CHilOLD

Proof

Step Hyp Ref Expression
1 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
2 1 hhhl ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ CHilOLD