| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hilablo |
⊢ +ℎ ∈ AbelOp |
| 2 |
|
ablogrpo |
⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) |
| 3 |
1 2
|
ax-mp |
⊢ +ℎ ∈ GrpOp |
| 4 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
| 5 |
4
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
| 6 |
3 5
|
grporn |
⊢ ℋ = ran +ℎ |
| 7 |
|
eqid |
⊢ ( GId ‘ +ℎ ) = ( GId ‘ +ℎ ) |
| 8 |
6 7
|
grpoidval |
⊢ ( +ℎ ∈ GrpOp → ( GId ‘ +ℎ ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) ) |
| 9 |
3 8
|
ax-mp |
⊢ ( GId ‘ +ℎ ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) |
| 10 |
|
hvaddlid |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 |
| 12 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 13 |
6
|
grpoideu |
⊢ ( +ℎ ∈ GrpOp → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) |
| 14 |
3 13
|
ax-mp |
⊢ ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 |
| 15 |
|
oveq1 |
⊢ ( 𝑦 = 0ℎ → ( 𝑦 +ℎ 𝑥 ) = ( 0ℎ +ℎ 𝑥 ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑦 = 0ℎ → ( ( 𝑦 +ℎ 𝑥 ) = 𝑥 ↔ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝑦 = 0ℎ → ( ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) ) |
| 18 |
17
|
riota2 |
⊢ ( ( 0ℎ ∈ ℋ ∧ ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) → ( ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) = 0ℎ ) ) |
| 19 |
12 14 18
|
mp2an |
⊢ ( ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) = 0ℎ ) |
| 20 |
11 19
|
mpbi |
⊢ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) = 0ℎ |
| 21 |
9 20
|
eqtri |
⊢ ( GId ‘ +ℎ ) = 0ℎ |