Metamath Proof Explorer


Theorem hilid

Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilid ( GId ‘ + ) = 0

Proof

Step Hyp Ref Expression
1 hilablo + ∈ AbelOp
2 ablogrpo ( + ∈ AbelOp → + ∈ GrpOp )
3 1 2 ax-mp + ∈ GrpOp
4 ax-hfvadd + : ( ℋ × ℋ ) ⟶ ℋ
5 4 fdmi dom + = ( ℋ × ℋ )
6 3 5 grporn ℋ = ran +
7 eqid ( GId ‘ + ) = ( GId ‘ + )
8 6 7 grpoidval ( + ∈ GrpOp → ( GId ‘ + ) = ( 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 ) )
9 3 8 ax-mp ( GId ‘ + ) = ( 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 )
10 hvaddid2 ( 𝑥 ∈ ℋ → ( 0 + 𝑥 ) = 𝑥 )
11 10 rgen 𝑥 ∈ ℋ ( 0 + 𝑥 ) = 𝑥
12 ax-hv0cl 0 ∈ ℋ
13 6 grpoideu ( + ∈ GrpOp → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 )
14 3 13 ax-mp ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥
15 oveq1 ( 𝑦 = 0 → ( 𝑦 + 𝑥 ) = ( 0 + 𝑥 ) )
16 15 eqeq1d ( 𝑦 = 0 → ( ( 𝑦 + 𝑥 ) = 𝑥 ↔ ( 0 + 𝑥 ) = 𝑥 ) )
17 16 ralbidv ( 𝑦 = 0 → ( ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ ℋ ( 0 + 𝑥 ) = 𝑥 ) )
18 17 riota2 ( ( 0 ∈ ℋ ∧ ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 ) → ( ∀ 𝑥 ∈ ℋ ( 0 + 𝑥 ) = 𝑥 ↔ ( 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 ) )
19 12 14 18 mp2an ( ∀ 𝑥 ∈ ℋ ( 0 + 𝑥 ) = 𝑥 ↔ ( 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 )
20 11 19 mpbi ( 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0
21 9 20 eqtri ( GId ‘ + ) = 0