Metamath Proof Explorer


Theorem hilims

Description: Hilbert space distance metric. (Contributed by NM, 13-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hilims.1 ℋ = ( BaseSet ‘ 𝑈 )
hilims.2 + = ( +𝑣𝑈 )
hilims.3 · = ( ·𝑠OLD𝑈 )
hilims.5 ·ih = ( ·𝑖OLD𝑈 )
hilims.8 𝐷 = ( IndMet ‘ 𝑈 )
hilims.9 𝑈 ∈ NrmCVec
Assertion hilims 𝐷 = ( norm ∘ − )

Proof

Step Hyp Ref Expression
1 hilims.1 ℋ = ( BaseSet ‘ 𝑈 )
2 hilims.2 + = ( +𝑣𝑈 )
3 hilims.3 · = ( ·𝑠OLD𝑈 )
4 hilims.5 ·ih = ( ·𝑖OLD𝑈 )
5 hilims.8 𝐷 = ( IndMet ‘ 𝑈 )
6 hilims.9 𝑈 ∈ NrmCVec
7 1 2 3 4 6 hilhhi 𝑈 = ⟨ ⟨ + , · ⟩ , norm
8 7 5 hhims2 𝐷 = ( norm ∘ − )