Description: Hilbert space distance metric. (Contributed by NM, 13-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hilims.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| hilims.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | ||
| hilims.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | ||
| hilims.5 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | ||
| hilims.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| hilims.9 | ⊢ 𝑈 ∈ NrmCVec | ||
| Assertion | hilims | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilims.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
| 2 | hilims.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | |
| 3 | hilims.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | hilims.5 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | hilims.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 6 | hilims.9 | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | 1 2 3 4 6 | hilhhi | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 8 | 7 5 | hhims2 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) |