Description: Hilbert space distance metric. (Contributed by NM, 13-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hilims.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
hilims.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | ||
hilims.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | ||
hilims.5 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | ||
hilims.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
hilims.9 | ⊢ 𝑈 ∈ NrmCVec | ||
Assertion | hilims | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilims.1 | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) | |
2 | hilims.2 | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) | |
3 | hilims.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) | |
4 | hilims.5 | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) | |
5 | hilims.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
6 | hilims.9 | ⊢ 𝑈 ∈ NrmCVec | |
7 | 1 2 3 4 6 | hilhhi | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
8 | 7 5 | hhims2 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) |